Asymptotic correlation functions and FFLO signature for the one-dimensional attractive spin-1/2 Fermi gas

被引:28
作者
Lee, J. Y. [1 ]
Guan, X. W. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Theoret Phys, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
DELTA-FUNCTION INTERACTION; HUBBARD-MODEL; THERMODYNAMICS; FIELD; SYSTEM; CHAIN;
D O I
10.1016/j.nuclphysb.2011.07.007
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the long distance asymptotics of various correlation functions for the one-dimensional spin-1/2 Fermi gas with attractive interactions using the dressed charge formalism. In the spin polarized phase, these correlation functions exhibit spatial oscillations with a power-law decay whereby their critical exponents are found through conformal field theory. We show that spatial oscillations of the leading terms in the pair correlation function and the spin correlation function solely depend on Delta k(F) and 2 Delta k(F), respectively. Here Delta k(F) = pi(n(up arrow) - n(down arrow)) denotes the mismatch between the Fermi surfaces of spin-up and spin-down fermions. Such spatial modulations are characteristics of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. Our key observation is that backscattering among the Fermi points of bound pairs and unpaired fermions results in a one-dimensional analog of the FFLO state and displays a microscopic origin of the FFLO nature. Furthermore, we show that the pair correlation function in momentum space has a peak at the point of mismatch between both Fermi surfaces k = Delta k(F), which has recently been observed in numerous numerical studies. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 43 条
[1]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[2]  
[Anonymous], 1965, PHYS JETP
[3]   Exact numerical study of pair formation with imbalanced fermion populations [J].
Batrouni, G. G. ;
Huntley, M. H. ;
Rousseau, V. G. ;
Scalettar, R. T. .
PHYSICAL REVIEW LETTERS, 2008, 100 (11)
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   CONFORMAL-INVARIANCE, THE CENTRAL CHARGE, AND UNIVERSAL FINITE-SIZE AMPLITUDES AT CRITICALITY [J].
BLOTE, HWJ ;
CARDY, JL ;
NIGHTINGALE, MP .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :742-745
[6]  
Bogoliubov N. M., 1988, Modern Physics Letters B, V1, P349, DOI 10.1142/S0217984988001387
[7]  
Bogoliubov N. M., 1989, International Journal of Modern Physics B, V3, P427, DOI 10.1142/S0217979289000324
[8]   CORRELATION-FUNCTIONS OF THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
BOGOLYUBOV, NM ;
KOREPIN, VE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1990, 82 (03) :231-243
[9]  
BOGOLYUBOV NM, 1992, P STEKLOV I MATH, V2, P47
[10]  
CARDY JL, 1986, NUCL PHYS B, V270, P168