H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment

被引:19
作者
Thome, K. E. [1 ,2 ]
Bongard, M. W. [1 ]
Barr, J. L. [1 ]
Bodner, G. M. [1 ]
Burke, M. G. [1 ]
Fonck, R. J. [1 ]
Kriete, D. M. [1 ]
Perry, J. M. [1 ]
Reusch, J. A. [1 ]
Schlossberg, D. J. [1 ]
机构
[1] Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA
[2] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
关键词
H-mode; spherical tokamaks; equilibrium reconstructions; energy confinement; ELM; ELM dynamics; MAST SPHERICAL TOKAMAK; GAS FUELING LOCATION; POWER THRESHOLD; HIGH-BETA; DIII-D; CONFINEMENT; PERFORMANCE; DISCHARGES; TRANSITION; PHYSICS;
D O I
10.1088/0029-5515/57/2/022018
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
H-mode is obtained at A similar to 1.2 in the Pegasus Toroidal Experiment via Ohmic heating, highfield- side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to H-98y,H-2 similar to 1. The L-H power threshold P-LH increases with density, and there is no P-LH minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured PLH is similar to 15x higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and P-LH/P-ITPA08 increases as A -> 1. Small ELMs are present at low input power P-IN similar to P-LH, with toroidal mode number n <= 4. At P-IN >> P-LH, they transition to large ELMs with intermediate 5< n< 15. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Hydrogen isotope effects on ITG scale length, pedestal and confinement in JT-60 H-mode plasmas
    Urano, H.
    Takizuka, T.
    Aiba, N.
    Kikuchi, M.
    Nakano, T.
    Fujita, T.
    Oyama, N.
    Kamada, Y.
    Hayashi, N.
    NUCLEAR FUSION, 2013, 53 (08)
  • [32] Microtearing mode in electron temperature pedestal evolution and collapse of KSTAR H-mode plasmas
    Lee, Jaehyun
    Kim, Minho
    Yun, Gunsu S.
    Kim, Minwoo
    Kwon, Jae-Min
    Kim, Juhyung
    Yi, Sumin
    Ko, Sehoon
    In, Yongkyoon
    PHYSICS OF PLASMAS, 2024, 31 (09)
  • [33] Simulations on W impurity transport in the edge of EAST H-mode plasmas
    Wang, Fuqiong
    Zha, X. J.
    Duan, Y. M.
    Mao, S. T.
    Wang, L.
    Zhong, F. C.
    Liang, L.
    Li, L.
    Lu, H. W.
    Hu, L. Q.
    Chen, Y. P.
    Yang, Z. D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (12)
  • [34] Quiescent H-Mode Plasmas with Strong Edge Rotation in the Cocurrent Direction
    Burrell, K. H.
    Osborne, T. H.
    Snyder, P. B.
    West, W. P.
    Fenstermacher, M. E.
    Groebner, R. J.
    Gohil, P.
    Leonard, A. W.
    Solomon, W. M.
    PHYSICAL REVIEW LETTERS, 2009, 102 (15)
  • [35] The role of toroidal rotation in the very high energy confinement quality observed in super H-mode experiments on DIII-D
    Ding, S.
    Garofalo, A. M.
    Jian, X.
    Holland, C.
    Grierson, B. A.
    Solomon, W. M.
    Marinoni, A.
    Knolker, M.
    McClenaghan, J.
    PHYSICS OF PLASMAS, 2021, 28 (11)
  • [36] Integrated modelling of neon impact on JET H-mode core plasmas
    Marin, M.
    Citrin, J.
    Giroud, C.
    Bourdelle, C.
    Camenen, Y.
    Garzotti, L.
    Ho, A.
    Sertoli, M.
    NUCLEAR FUSION, 2023, 63 (01)
  • [37] Dependence of the L- to H-mode power threshold on toroidal rotation and the link to edge turbulence dynamics
    McKee, G. R.
    Gohil, P.
    Schlossberg, D. J.
    Boedo, J. A.
    Burrell, K. H.
    deGrassie, J. S.
    Groebner, R. J.
    Moyer, R. A.
    Petty, C. C.
    Rhodes, T. L.
    Schmitz, L.
    Shafer, M. W.
    Solomon, W. M.
    Umansky, M.
    Wang, G.
    White, A. E.
    Xu, X.
    NUCLEAR FUSION, 2009, 49 (11)
  • [38] The scalings of the thermal energy confinement time in EAST H-mode plasmas
    Jia, T. Q.
    Qian, J. P.
    Chen, D. L.
    Moreau, D.
    Shen, B.
    Zhang, B.
    Gong, X. Z.
    Huang, J.
    Zhang, J. Y.
    Yang, X. D.
    Liang, R. R.
    Hu, Y. C.
    Chen, L. X.
    He, Y. F.
    Tao, Y.
    Wang, Z. H.
    Zeng, L.
    Sun, Y. W.
    NUCLEAR FUSION, 2023, 63 (03)
  • [39] Role of Combined NNBI and ICRH Heating in FAST H-mode plasmas
    Cardinali, A.
    Calabro, G.
    Di Troia, C.
    Marinucci, M.
    Baiocchi, B.
    Bilato, R.
    Brambilla, M.
    Briguglio, S.
    Fogaccia, G.
    Mantica, P.
    Vlad, G.
    Zonca, F.
    RADIO FREQUENCY POWER IN PLASMAS: PROCEEDINGS OF THE 19TH TOPICAL CONFERENCE, 2011, 1406
  • [40] Experimental validation of momentum transport theory in the core of H-mode plasmas in the ASDEX Upgrade tokamak
    Zimmermann, C. F. B.
    Angioni, C.
    McDermott, R. M.
    Duval, B. P.
    Dux, R.
    Fable, E.
    Salmi, A.
    Stroth, U.
    Tala, T.
    Tardini, G.
    Puetterich, T.
    PHYSICS OF PLASMAS, 2024, 31 (04)