Light electric vehicle charging strategy for low impact on the grid

被引:19
作者
Bastida-Molina, Paula [1 ]
Hurtado-Perez, Elias [1 ]
Perez-Navarro, Angel [1 ]
Alfonso-Solar, David [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Invest Ingn Energet, Valencia, Spain
关键词
Electric vehicle; Recharging strategy; Schedule optimization; Demand curve; Temporal valleys; Peak loads; LOAD; PENETRATION; ADOPTION; DEMAND; STATE;
D O I
10.1007/s11356-020-08901-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The alarming increase in the average temperature of the planet due to the massive emission of greenhouse gases has stimulated the introduction of electric vehicles (EV), given transport sector is responsible for more than 25% of the total global CO2 emissions. EV penetration will substantially increase electricity demand and, therefore, an optimization of the EV recharging scenario is needed to make full use of the existing electricity generation system without upgrading requirements. In this paper, a methodology based on the use of the temporal valleys in the daily electricity demand is developed for EV recharge, avoiding the peak demand hours to minimize the impact on the grid. The methodology assumes three different strategies for the recharge activities: home, public buildings, and electrical stations. It has been applied to the case of Spain in the year 2030, assuming three different scenarios for the growth of the total fleet: low, medium, and high. For each of them, three different levels for the EV penetration by the year 2030 are considered: 25%, 50%, and 75%, respectively. Only light electric vehicles (LEV), cars and motorcycles, are taken into account given the fact that batteries are not yet able to provide the full autonomy desired by heavy vehicles. Moreover, heavy vehicles have different travel uses that should be separately considered. Results for the fraction of the total recharge to be made in each of the different recharge modes are deduced with indication of the time intervals to be used in each of them. For the higher penetration scenario, 75% of the total park, an almost flat electricity demand curve is obtained. Studies are made for working days and for non-working days.
引用
收藏
页码:18790 / 18806
页数:17
相关论文
共 50 条
  • [31] The impact of charging electric buses on the power grid
    Clairand, Jean-Michel
    Gonzalez-Roriguez, Mario
    Guerra Teran, Paulo
    Cedenno, Irvin
    Escriva-Escriva, Guillermo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [32] Low voltage grid resilience: Evaluating electric vehicle charging strategies in the context of the grid development plan Germany
    Reibsch, Ricardo
    Gemassmer, Jakob
    Katerbau, Tabea
    ETRANSPORTATION, 2024, 20
  • [33] Electric vehicle charging load forecasting considering weather impact
    Wang, Wenhao
    Tang, Aihong
    Wei, Feng
    Yang, Huiyuan
    Xinran, Li
    Peng, Jiao
    APPLIED ENERGY, 2025, 383
  • [34] Vehicle-to-Grid Aggregator to Support Power Grid and Reduce Electric Vehicle Charging Cost
    Amamra, Sid-Ali
    Marco, James
    IEEE ACCESS, 2019, 7 : 178528 - 178538
  • [35] Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid
    Clairand, Jean-Michel
    Alvarez-Bel, Carlos
    Rodriguez-Garcia, Javier
    Escriva-Escriva, Guillermo
    ENERGIES, 2020, 13 (13)
  • [36] Durability and reliability of electric vehicle batteries under electric utility grid operations: Bidirectional charging impact analysis
    Dubarry, Matthieu
    Devie, Arnaud
    McKenzie, Katherine
    JOURNAL OF POWER SOURCES, 2017, 358 : 39 - 49
  • [37] A Hierarchical Control Strategy for Electric Vehicle Coordinated Charging
    Mao, Ling
    Wang, Can
    Ma, Mengge
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 837 - 840
  • [38] An efficient hierarchical electric vehicle charging control strategy
    He, Chenyuan
    Zhang, Zhouyu
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023,
  • [39] Priority Wise Electric Vehicle Charging for Grid Load Minimization
    Jawale, Sayali Ashok
    Singh, Sanjay Kumar
    Singh, Pushpendra
    Kolhe, Mohan Lal
    PROCESSES, 2022, 10 (09)
  • [40] Economic model for an electric vehicle charging station with vehicle-to-grid functionality
    Mercan, Muhammed Cihat
    Kayalica, M. Ozgur
    Kayakutlu, Gulgun
    Ercan, Secil
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (08) : 6697 - 6708