Light electric vehicle charging strategy for low impact on the grid

被引:19
作者
Bastida-Molina, Paula [1 ]
Hurtado-Perez, Elias [1 ]
Perez-Navarro, Angel [1 ]
Alfonso-Solar, David [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Invest Ingn Energet, Valencia, Spain
关键词
Electric vehicle; Recharging strategy; Schedule optimization; Demand curve; Temporal valleys; Peak loads; LOAD; PENETRATION; ADOPTION; DEMAND; STATE;
D O I
10.1007/s11356-020-08901-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The alarming increase in the average temperature of the planet due to the massive emission of greenhouse gases has stimulated the introduction of electric vehicles (EV), given transport sector is responsible for more than 25% of the total global CO2 emissions. EV penetration will substantially increase electricity demand and, therefore, an optimization of the EV recharging scenario is needed to make full use of the existing electricity generation system without upgrading requirements. In this paper, a methodology based on the use of the temporal valleys in the daily electricity demand is developed for EV recharge, avoiding the peak demand hours to minimize the impact on the grid. The methodology assumes three different strategies for the recharge activities: home, public buildings, and electrical stations. It has been applied to the case of Spain in the year 2030, assuming three different scenarios for the growth of the total fleet: low, medium, and high. For each of them, three different levels for the EV penetration by the year 2030 are considered: 25%, 50%, and 75%, respectively. Only light electric vehicles (LEV), cars and motorcycles, are taken into account given the fact that batteries are not yet able to provide the full autonomy desired by heavy vehicles. Moreover, heavy vehicles have different travel uses that should be separately considered. Results for the fraction of the total recharge to be made in each of the different recharge modes are deduced with indication of the time intervals to be used in each of them. For the higher penetration scenario, 75% of the total park, an almost flat electricity demand curve is obtained. Studies are made for working days and for non-working days.
引用
收藏
页码:18790 / 18806
页数:17
相关论文
共 50 条
  • [1] Light electric vehicle charging strategy for low impact on the grid
    Paula Bastida-Molina
    Elías Hurtado-Pérez
    Ángel Pérez-Navarro
    David Alfonso-Solar
    Environmental Science and Pollution Research, 2021, 28 : 18790 - 18806
  • [2] Impact of Electric Vehicle Charging on the Performance of Distribution Grid
    Ahmed, Sina Ibne
    Salehfar, Hossein
    Selvaraj, Daisy Flora
    2021 IEEE 12TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG), 2021,
  • [3] Impact of Electric Vehicle Charging on the Performance of Distribution Grid
    Ahmed, Sina Ibne
    Salehfar, Hossein
    Selvaraj, Daisy Flora
    2021 IEEE 12TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG), 2021,
  • [4] Electric Vehicle Charging Infrastructure, Standards, Types, and Its Impact on Grid: A Review
    Bhosale, P.
    Sujil, A.
    Kumar, Rajesh
    Bansal, R. C.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024,
  • [5] Review of impact of Electric Vehicle Charging Station on the power grid
    Deb, Sanchari
    Kalita, Karuna
    Mahanta, Pinakeshwar
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCEMENTS IN POWER AND ENERGY (TAP ENERGY): EXPLORING ENERGY SOLUTIONS FOR AN INTELLIGENT POWER GRID, 2017,
  • [6] Congestion Probability Balanced Electric Vehicle Charging Strategy in Smart Grid
    Tang, Qiang
    Yang, Kun
    Luo, Yuan-sheng
    Liu, Yu-yan
    SMART GRID INSPIRED FUTURE TECHNOLOGIES, 2017, 203 : 192 - 201
  • [7] Empirical grid impact of in-home electric vehicle charging differs from predictions
    Qiu, Yueming Lucy
    Wang, Yi David
    Iseki, Hiroyuki
    Shen, Xingchi
    Xing, Bo
    Zhang, Huiming
    RESOURCE AND ENERGY ECONOMICS, 2022, 67
  • [8] Impact of Electric Vehicle Charging Mode on Load Characteristic in the Shandong Electric Power Grid
    Wang Jian
    Wu Kuihua
    Wang Feng
    Wu Kuizhong
    Liu Zhizhen
    PROGRESS IN RENEWABLE AND SUSTAINABLE ENERGY, PTS 1 AND 2, 2013, 608-609 : 1582 - +
  • [9] A critical review of the effect of light duty electric vehicle charging on the power grid
    Tasnim, Moshammed Nishat
    Akter, Shahrin
    Shahjalal, Mohammad
    Shams, Tamanna
    Davari, Pooya
    Iqbal, Atif
    ENERGY REPORTS, 2023, 10 : 4126 - 4147
  • [10] Controlling Electric Vehicle Charging in the Smart Grid
    Xiang, Wang
    Kunz, Thomas
    St-Hilaire, Marc
    2014 IEEE WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2014, : 341 - 346