A class of shape optimization problems for some nonlocal operators

被引:11
作者
Fernandez Bonder, Julian [1 ,2 ]
Ritorto, Antonella [1 ,2 ]
Martin Salort, Ariel [1 ,2 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Buenos Aires, DF, Argentina
关键词
Fractional partial differential equations; shape optimization; SOBOLEV SPACES; LEVY; DIFFUSION; DYNAMICS; PATTERNS; GUIDE;
D O I
10.1515/acv-2016-0065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study a family of shape optimization problem where the state equation is given in terms of a nonlocal operator. Examples of the problems considered are monotone combinations of fractional eigenvalues. Moreover, we also analyze the transition from nonlocal to local state equations.
引用
收藏
页码:373 / 386
页数:14
相关论文
共 36 条
[1]   THE STABLE-LAW MODEL OF STOCK RETURNS [J].
AKGIRAY, V ;
BOOTH, GG .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1988, 6 (01) :51-57
[2]  
[Anonymous], 2002, APPL MATH SCI
[3]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[4]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[5]   STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN [J].
Brasco, Lorenzo ;
Parini, Enea ;
Squassina, Marco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) :1813-1845
[6]  
Brezis H., 2011, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext
[7]  
Bucur D., 2005, Prog. Nonlinear Differ. Equ. Appl, V65
[8]  
Burchard A., 2015, PREPRINT
[9]   AN EXISTENCE RESULT FOR A CLASS OF SHAPE OPTIMIZATION PROBLEMS [J].
BUTTAZZO, G ;
DALMASO, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (02) :183-195
[10]  
Constantin P, 2006, LECT NOTES MATH, V1871, P1