Effect of engineering constraints on charged particle wall heat loads in DEMO

被引:24
作者
Maviglia, F. [1 ,2 ]
Federici, G. [1 ]
Wenninger, R. [1 ,3 ]
Albanese, R. [2 ]
Ambrosino, R. [4 ]
Bachmann, C. [1 ]
Barbato, L. [2 ]
Cismondi, F. [1 ]
Firdaouss, M. [5 ]
Loschiavo, V. P. [2 ]
Lowry, C. [6 ,7 ]
机构
[1] EUROfus Consortium, PPPT Dept, Boltzmannstr 2, Garching, Germany
[2] Univ Napoli Federico II DIETI, Consorzio CREATE, I-80125 Naples, Italy
[3] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany
[4] Univ Napoli Parthenope, Consorzio CREATE, Naples, Italy
[5] CEA, F-13108 St Paul Les Durance, France
[6] European Commiss, B-1049 Brussels, Belgium
[7] Culham Sci Ctr, JET Exploitat Unit, Abingdon OX14 3DB, Oxon, England
关键词
DEMO; PFC; First wall; Power exhaust;
D O I
10.1016/j.fusengdes.2017.02.077
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The presently predicted total heating power of the demonstration fusion reactor DEMO is 3 times the ITER value, while the major radius is only 1.5 times larger (R. Wenninger, et al., The DEMO Wall Load Challenge, Nucl. Fusion 57 (2017) 046002 (11pp)) [1]. The current DEMO technological wall heat load removal capability is limited to similar to 1 MW/m(2), due to structural material limitations and the tritium breeding requirements, while the ITER first wall (FW) is designed for values up to 4.7 MW/m(2). This paper focuses on the evaluation of the effect of the engineering constraints on the required limitation of charged particle heat load. First, a 2D field-mapping tool is used together with a simple model to take into account the peaking factors present on an engineering 3D wall design. A sensitivity analysis is performed on a set of realistic FW 3D features considering a preliminary estimate of misalignments. The impact on the heat flux to the wall due to different machine geometries, plasma shapes variation, stationary plasma and plasma transients, is presented. An automatic procedure to define the 2D poloidal contour of the FW for minimized particle loads is presented. A subset of the resulting engineering wall design is analyzed using the 3D field line tracing code PFCflux. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 17 条
[1]   CREATE-NL plus : A robust control-oriented free boundary dynamic plasma equilibrium solver [J].
Albanese, R. ;
Ambrosino, R. ;
Mattei, M. .
FUSION ENGINEERING AND DESIGN, 2015, 96-97 :664-667
[2]   The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks [J].
Albanese, R ;
Villone, F .
NUCLEAR FUSION, 1998, 38 (05) :723-738
[3]  
Albanese R., 2008, IEEE T MAG, V44
[4]   Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices [J].
Arbeiter, Frederik ;
Bachmann, Christian ;
Chen, Yuming ;
Ilic, Milica ;
Schwab, Florian ;
Sieglin, Bernhard ;
Wenninger, Ronald .
FUSION ENGINEERING AND DESIGN, 2016, 109 :1123-1129
[5]   Optimization of the first wall for the DEMO water cooled lithium lead blanket [J].
Aubert, Julien ;
Aiello, Giacomo ;
Bachmann, Christian ;
Di Maio, Pietro Alessandro ;
Giammusso, Rosario ;
Li Puma, Antonella ;
Morin, Alexandre ;
Tincani, Amelia .
FUSION ENGINEERING AND DESIGN, 2015, 98-99 :1206-1210
[6]  
Barrett T., 2016, 29 SOFT
[7]   Control of Elongated Plasma in Presence of ELMs in the JET Tokamak [J].
Bellizio, Teresa ;
Albanese, Raffaele ;
Ambrosino, Giuseppe ;
Ariola, Marco ;
Artaserse, Giovanni ;
Crisanti, Flavio ;
Coccorese, Vincenzo ;
De Tommasi, Gianmaria ;
Lomas, Peter J. ;
Maviglia, Francesco ;
Neto, Andre ;
Pironti, Alfredo ;
Rimini, Fernanda ;
Sartori, Filippo ;
Vitelli, Riccardo ;
Zabeo, Luca .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (04) :1497-1502
[8]   Experimental Validation of a Filament Transport Model in Turbulent Magnetized Plasmas [J].
Carralero, D. ;
Manz, P. ;
Aho-Mantila, L. ;
Birkenmeier, G. ;
Brix, M. ;
Groth, M. ;
Mueller, H. W. ;
Stroth, U. ;
Vianello, N. ;
Wolfrum, E. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. .
PHYSICAL REVIEW LETTERS, 2015, 115 (21)
[9]   Modelling of power deposition on the JET ITER like wall using the code PFCFLux [J].
Firdaouss, M. ;
Riccardo, V. ;
Martin, V. ;
Arnoux, G. ;
Reux, C. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S536-S539
[10]   A shaped First Wall for ITER [J].
Mitteau, R. ;
Stangeby, P. ;
Lowry, C. ;
Firdaouss, M. ;
Labidi, H. ;
Loarte, A. ;
Merola, M. ;
Pitts, R. ;
Raffray, R. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S969-S972