Turbulent flame image classification using Convolutional Neural Networks

被引:8
|
作者
Roncancio, Rathziel [1 ]
El Gamal, Aly [2 ]
Gore, Jay P. [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
CNN; Flame; Neural network; Turbulent; PREMIXED FLAMES; LOCAL FLAME; OH-PLIF; COMBUSTION; MODEL; CH;
D O I
10.1016/j.egyai.2022.100193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pockets of unburned material in turbulent premixed flames burning CH4, air, and CO2 were studied using OH Planar Laser-Induced Fluorescence (PLIF) images to improve current understanding. Such flames are ubiquitous in most natural gas air combustors running gas turbines with dry exhaust gas recirculation (EGR) for land-based power generation. Essential improvements continue in the characterization and understanding of turbulent flames with EGR particularly for transient events like ignition and extinction. Pockets and/or islands of unburned material within burned and unburned turbulent media are some of the features of these events. These features reduce the heat release rates and increase the carbon monoxide and hydrocarbons emissions. The present work involves Convolutional Neural Networks (CNN) based classification of PLIF images containing unburned pockets in three turbulent flames with 0%, 5%, and 10% CO2. The CNN model was constructed using three convolutional layers and two fully connected layers using dropout and weight decay. Accuracies of 94.2%, 92.3% and 89.2% were registered for the three flames, respectively. The present approach represents significant computational time savings with respect to conventional image processing methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Image Classification Using Convolutional Neural Networks
    Filippov, S. A.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2024, 58 (SUPPL3) : S143 - S149
  • [2] Advanced Image Classification using Wavelets and Convolutional Neural Networks
    Williams, Travis
    Li, Robert
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 233 - 239
  • [3] CLASSIFICATION OF MICROCHANNEL FLAME REGIMES BASED ON CONVOLUTIONAL NEURAL NETWORKS
    Isfahani, Seyed Navid Roohani
    Sauer, Vinicius M.
    Schoegl, Ingmar
    PROCEEDINGS OF THE ASME 2021 POWER CONFERENCE (POWER2021), 2021,
  • [4] Lidar Image Classification based on Convolutional Neural Networks
    Wenhui, Yang
    Yu Fan
    2017 INTERNATIONAL CONFERENCE ON COMPUTER NETWORK, ELECTRONIC AND AUTOMATION (ICCNEA), 2017, : 221 - 225
  • [5] An Image Classification Scheme for Improved Convolutional Neural Networks
    He Weixin
    Cong Linhu
    Deng Jianqiu
    Zhou Haichao
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 614 - 617
  • [6] Modified Convolutional Neural Networks Architecture for Hyperspectral Image Classification (Extra-Convolutional Neural Networks)
    Hamouda, Maissa
    Bouhlel, Med Salim
    IET IMAGE PROCESSING, 2021,
  • [7] Apparel Classification Using Convolutional Neural Networks
    Eshwar, S. G.
    Prabhu, Gautham Ganesh J.
    Rishikesh, A. V.
    Charan, N. A.
    Umadevi, V
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ICT IN BUSINESS INDUSTRY & GOVERNMENT (ICTBIG), 2016,
  • [8] Cloud Classification of Satellite Image Based on Convolutional Neural Networks
    Cai, Keyang
    Wang, Hong
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 874 - 877
  • [9] Review of Image Classification Algorithms Based on Convolutional Neural Networks
    Chen, Leiyu
    Li, Shaobo
    Bai, Qiang
    Yang, Jing
    Jiang, Sanlong
    Miao, Yanming
    REMOTE SENSING, 2021, 13 (22)
  • [10] Classifiers Comparison for Convolutional Neural Networks (CNNs) in Image Classification
    Tropea, Mauro
    Fedele, Giuseppe
    2019 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS (DS-RT), 2019, : 310 - 313