Weak Galerkin finite element methods for linear parabolic integro-differential equations

被引:21
作者
Zhu, Ailing [1 ]
Xu, Tingting [1 ]
Xu, Qiang [1 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
error estimates; finite element methods; integro-differential equations; weak Galerkin methods; 2ND-ORDER ELLIPTIC PROBLEMS; BIHARMONIC EQUATION; NUMERICAL-SOLUTION; APPROXIMATIONS;
D O I
10.1002/num.22053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The semidiscrete and fully discrete weak Galerkin finite element schemes for the linear parabolic integro-differential equations are proposed. Optimal order error estimates are established for the corresponding numerical approximations in both L 2 and H 1 norms. Numerical experiments illustrating the error behaviors are provided.(c) 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1357-1377, 2016
引用
收藏
页码:1357 / 1377
页数:21
相关论文
共 31 条
[31]  
[朱爱玲 Zhu Ailing], 2009, [高等学校计算数学学报, Numerical Mathematics A Journal of Chinese University], V31, P193