STABILITY OF THE BARON-VOLKMANN FUNCTIONAL EQUATIONS

被引:0
作者
Przebieracz, Barbara [1 ]
机构
[1] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2011年 / 14卷 / 01期
关键词
Absolute value of linear functional; functional equations; stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the stability of the equations sup(lambda is an element of T) f(x + lambda y) = f(x) + f(y) and inf(lambda is an element of T) f(x + lambda y) = vertical bar f(x) f(y)vertical bar. Here, f is a real-valued function on V, where V is a complex vector space and T - {z is an element of C : vertical bar z vertical bar - 1}. Each of these equations characterizes the absolute value of complex linear functionals.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 3 条
  • [1] Baron K., 2006, CHARACTERIZATION ABS
  • [2] Kuczma M., 1985, An Introduction to the Theory of Functional Equations and Inequalities
  • [3] Cauchy's Equation and Jensen's Inequality