Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR Data-A Dual-Band Data Fusion Approach

被引:7
作者
Jing, Lili [1 ]
Yang, Lei [2 ,3 ]
Yang, Wentao [4 ]
Xu, Tianhe [1 ]
Gao, Fan [1 ]
Lu, Yilin [5 ]
Sun, Bo [2 ]
Yang, Dongkai [3 ]
Hong, Xuebao [3 ]
Wang, Nazi [1 ]
Ruan, Hongliang [6 ]
Darrozes, Jose [7 ]
机构
[1] Shandong Univ, Inst Space Sci, Weihai 264209, Peoples R China
[2] Shandong Agr Univ, Coll Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
[3] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[4] Changan Univ, Sch Geol Engn & Surveying & Mapping, Xian 710054, Peoples R China
[5] China Assoc Remote Sensing Applicat, Beijing 100094, Peoples R China
[6] Jinhua Polytech, Sch Business, Jinhua 321000, Zhejiang, Peoples R China
[7] Univ Paul Sabatier, Lab Geosci Environm Toulouse, F-31400 Toulouse, France
基金
中国国家自然科学基金;
关键词
GNSS; Signal-to-Noise Ratio; soil moisture; Robust Kalman Filter; data fusion; REFLECTOMETRY; MULTIPATH;
D O I
10.3390/rs13194013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article aims to attempt to increase the number of satellites that can be used for monitoring soil moisture to obtain more precise results using GNSS-IR (Global Navigation Satellite System-Interferometric Reflectometry) technology to estimate soil moisture. We introduce a soil moisture inversion model by using GPS SNR (Signal-to-Noise Ratio) data and propose a novel Robust Kalman Filter soil moisture inversion model based on that. We validate our models on a data set collected at Lamasquere, France. This paper also compares the precision of the Robust Kalman Filter model with the conventional linear regression method and robust regression model in three different scenarios: (1) single-band univariate regression, by using only one observable feature such as frequency, amplitude, or phase; (2) dual-band data fusion univariate regression; and (3) dual-band data fusion multivariate regression. First, the proposed models achieve higher accuracy than the conventional method for single-band univariate regression, especially by using the phase as the input feature. Second, dual-band univariate data fusion achieves higher accuracy than single-band and the result of the Robust Kalman Filter model correlates better to the in situ measurement. Third, multivariate variable fusion improves the accuracy for both models, but the Robust Kalman Filter model achieves better improvement. Overall, the Robust Kalman Filter model shows better results in all the scenarios.
引用
收藏
页数:20
相关论文
共 39 条
[1]  
Ambadan JT, 2009, J ATMOS SCI, V66, P261, DOI 10.1175/200SJAS2681.1
[2]   Impact of the Elevation Angle on CYGNSS GNSS-R Bistatic Reflectivity as a Function of Effective Surface Roughness over Land Surfaces [J].
Carreno-Luengo, Hugo ;
Luzi, Guido ;
Crosetto, Michele .
REMOTE SENSING, 2018, 10 (11)
[3]   Estimating inundation extent using CYGNSS data: A conceptual modeling study [J].
Chew, Clara ;
Small, Eric .
REMOTE SENSING OF ENVIRONMENT, 2020, 246
[4]   An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil [J].
Chew, Clara ;
Small, Eric E. ;
Larson, Kristine M. .
GPS SOLUTIONS, 2016, 20 (03) :525-537
[5]   Effect of root zone soil moisture on the SWAT model simulation of surface and subsurface hydrological fluxes [J].
Choudhary, Rajat ;
Athira, P. .
ENVIRONMENTAL EARTH SCIENCES, 2021, 80 (18)
[6]  
Hample F. R., 1986, ROBUST STAT APPROACH
[7]   A Semi-Empirical SNR Model for Soil Moisture Retrieval Using GNSS SNR Data [J].
Han, Mutian ;
Zhu, Yunlong ;
Yang, Dongkai ;
Hong, Xuebao ;
Song, Shuhui .
REMOTE SENSING, 2018, 10 (02)
[8]   Status, perspectives and trends of satellite navigation [J].
Hein, Guenter W. .
SATELLITE NAVIGATION, 2020, 1 (01)
[9]   Sequential Processing of GNSS-R Delay-Doppler Maps to Estimate the Ocean Surface Wind Field [J].
Huang, Feixiong ;
Garrison, James L. ;
Rodriguez-Alvarez, Nereida ;
O'Brien, Andrew J. ;
Schoenfeldt, Kaitie M. ;
Ho, Soon Chye ;
Zhang, Han .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12) :10202-10217
[10]  
Huber P.J., 1981, ROBUST STAT