HYPERGEOMETRIC EVALUATION IDENTITIES AND SUPERCONGRUENCES

被引:124
作者
Long, Ling [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Ramanujan supercongruences; hypergeometric identities; SERIES;
D O I
10.2140/pjm.2011.249.405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply some hypergeometric evaluation identities, including a strange valuation of Gosper, to prove several supercongruences related to special valuations of truncated hypergeometric series. In particular, we prove a conjecture of van Hamme.
引用
收藏
页码:405 / 418
页数:14
相关论文
共 15 条
[1]  
Ahlgren S, 2000, J REINE ANGEW MATH, V518, P187
[2]  
[Anonymous], 1935, Cambridge Tracts in Mathematics and Mathematical Physics
[3]   A congruence involving the quotients of Euler and its applications (I) [J].
Cai, TX .
ACTA ARITHMETICA, 2002, 103 (04) :313-320
[4]   A supercongruence motivated by the Legendre family of elliptic curves [J].
Chan, Heng Huat ;
Long, Ling ;
Zudilin, V. V. .
MATHEMATICAL NOTES, 2010, 88 (3-4) :599-602
[5]   STRANGE EVALUATIONS OF HYPERGEOMETRIC-SERIES [J].
GESSEL, I ;
STANTON, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (02) :295-308
[6]   Finding identities with the WZ method [J].
Gessel, IM .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (5-6) :537-566
[7]   An extension of the Apery number supercongruence [J].
Kilbourn, Timothy .
ACTA ARITHMETICA, 2006, 123 (04) :335-348
[8]   A p-adic analogue of a formula of Ramanujan [J].
McCarthy, Dermot ;
Osburn, Robert .
ARCHIV DER MATHEMATIK, 2008, 91 (06) :492-504
[9]   A p-adic supercongruence conjecture of van Hamme [J].
Mortenson, Eric .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4321-4328
[10]  
Rodriques-Villegas F., 2003, Fields Institute Communications, V38, P223