SnRK1 from Arabidopsis thaliana is an atypical AMPK

被引:127
作者
Emanuelle, Shane [1 ,2 ,3 ]
Hossain, Mohammed Iqbal [4 ]
Moller, Isabel E. [5 ]
Pedersen, Henriette L. [6 ]
van de Meene, Allison M. L. [1 ,2 ]
Doblin, Monika S. [1 ,2 ]
Koay, Ann [3 ]
Oakhill, Jonathan S. [7 ]
Scott, John W. [7 ]
Willats, William G. T. [6 ]
Kemp, Bruce E. [7 ]
Bacic, Antony [1 ,2 ]
Gooley, Paul R. [3 ]
Stapleton, David I. [8 ]
机构
[1] Univ Melbourne, Australian Res Council Ctr Excellence Plant Cell, Sch Bot, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Mol Sci & Biotechnol Inst Bio21, Parkville, Vic 3010, Australia
[3] Univ Melbourne, Mol Sci & Biotechnol Inst Bio21, Dept Biochem & Mol Biol, Parkville, Vic 3010, Australia
[4] Univ Melbourne, Dept Physiol, Parkville, Vic 3010, Australia
[5] ViaLactia BioSci Ltd, Auckland 1149, New Zealand
[6] Univ Copenhagen, Fac Life Sci, DK-1870 Frederiksberg C, Denmark
[7] Univ Melbourne, St Vincents Inst Med Res, Dept Prot Chem & Metab, Fitzroy, Vic 3065, Australia
[8] Univ Melbourne, Florey Inst Neurosci & Mental Hlth, Melbourne, Vic 3010, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
SNF1-related protein kinase 1; AMP-activated protein kinase; sucrose non-fermenting 1 protein; Arabidopsis; phosphorylation; kinase; ACTIVATED PROTEIN-KINASE; CARBOHYDRATE-BINDING MODULE; BETA-SUBUNITS; STRUCTURAL BASIS; NITRATE REDUCTASE; YEAST; ENERGY; SNF1; PHOSPHORYLATION; STRESS;
D O I
10.1111/tpj.12813
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
SNF1-related protein kinase 1 (SnRK1) is the plant orthologue of the evolutionarily-conserved SNF1/AMPK/SnRK1 protein kinase family that contributes to cellular energy homeostasis. Functional as heterotrimers, family members comprise a catalytic subunit and non-catalytic and subunits; multiple isoforms of each subunit type exist, giving rise to various isoenzymes. The Arabidopsis thaliana genome contains homologues of each subunit type, and, in addition, two atypical subunits, (3) and , with unique domain architecture, that are found only amongst plants, suggesting atypical heterotrimers. The AtSnRK1 subunit structure was determined using recombinant protein expression and endogenous co-immunoprecipitation, and six unique isoenzyme combinations were identified. Each heterotrimeric isoenzyme comprises a catalytic subunit together with the unique subunit and one of three non-catalytic subunits: (1), (2) or the plant-specific (3) isoform. Thus, the AtSnRK1 heterotrimers contain the atypical subunit rather than a conventional subunit. Mammalian AMPK heterotrimers are phosphorylated on the T-loop (pThr175/176) within both catalytic a subunits. However, AtSnRK1 is insensitive to AMP and ADP, and is resistant to T-loop dephosphorylation by protein phosphatases, a process that inactivates other SNF1/AMPK family members. In addition, we show that SnRK1 is inhibited by a heat-labile, >30kDa, soluble proteinaceous factor that is present in the lysate of young rosette leaves. Finally, none of the three SnRK1 carbohydrate-binding modules, located in the (1), (2) and subunits, associate with various carbohydrates, including starch, the plant analogue of glycogen to which AMPK binds in vitro. These data clearly demonstrate that AtSnRK1 is an atypical member of the SNF1/AMPK/SnRK1 family. Significance Statement Here we show that SnRK1, an energy-sensing enzyme found in plants, can exist as six different isoenzymes. Compared to AMP-activated protein kinase, the mammalian homologue, SnRK1 is not affected by phosphorylation, nucleotides or carbohydrates. This knowledge will contribute to understanding the role of SnRK1 in how plants cope with stress and maintain crop yield.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 54 条
[1]   Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site [J].
Adams, J ;
Chen, ZP ;
Van Denderen, BJW ;
Morton, CJ ;
Parker, MW ;
Witters, LA ;
Stapleton, D ;
Kemp, BE .
PROTEIN SCIENCE, 2004, 13 (01) :155-165
[2]   Structural and functional basis for starch binding in the SnRK1 subunits AKINβ2 and AKINβγ [J].
Avila-Castaneda, Alejandra ;
Gutierrez-Granados, Natalia ;
Ruiz-Gayosso, Ana ;
Sosa-Peinado, Alejandro ;
Martinez-Barajas, Eleazar ;
Coello, Patricia .
FRONTIERS IN PLANT SCIENCE, 2014, 5
[3]   Convergent energy and stress signaling [J].
Baena-Gonzalez, Elena ;
Sheen, Jen .
TRENDS IN PLANT SCIENCE, 2008, 13 (09) :474-482
[4]   A central integrator of transcription networks in plant stress and energy signalling [J].
Baena-Gonzalez, Elena ;
Rolland, Filip ;
Thevelein, Johan M. ;
Sheen, Jen .
NATURE, 2007, 448 (7156) :938-U10
[5]   AMP-Activated Protein Kinase β-Subunit Requires Internal Motion for Optimal Carbohydrate Binding [J].
Bieri, Michael ;
Mobbs, Jesse I. ;
Koay, Ann ;
Louey, Gavin ;
Mok, Yee-Foong ;
Hatters, Danny M. ;
Park, Jong-Tae ;
Park, Kwan-Hwa ;
Neumann, Dietbert ;
Stapleton, David ;
Gooley, Paul R. .
BIOPHYSICAL JOURNAL, 2012, 102 (02) :305-314
[6]   Arabidopsis thaliana proteins related to the yeast SIP and SNF4 interact with AKINα1, an SNF1-like protein kinase [J].
Bouly, JP ;
Gissot, L ;
Lessard, P ;
Kreis, M ;
Thomas, M .
PLANT JOURNAL, 1999, 18 (05) :541-550
[7]   Crystal structure of the rice branching enzyme I (BEI) in complex with maltopentaose [J].
Chaen, Kimiko ;
Noguchi, Junji ;
Omori, Toshiro ;
Kakuta, Yoshimitsu ;
Kimura, Makoto .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 424 (03) :508-511
[8]   The carbohydrate-binding module family 20-diversity, structure, and function [J].
Christiansen, Camilla ;
Abou Hachem, Maher ;
Janecek, Stefan ;
Vikso-Nielsen, Anders ;
Blennow, Andreas ;
Svensson, Birte .
FEBS JOURNAL, 2009, 276 (18) :5006-5029
[9]   Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK) 1 in wheat and activation of a putative calcium-dependent SnRK2 [J].
Coello, Patricia ;
Hirano, Emi ;
Hey, Sandra J. ;
Muttucumaru, Nira ;
Martinez-Barajas, Eleazar ;
Parry, Martin A. J. ;
Halford, Nigel G. .
JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (02) :913-924
[10]  
ESTRUCH F, 1992, GENETICS, V132, P639