Incremental Unsupervised Domain-Adversarial Training of Neural Networks

被引:28
|
作者
Gallego, Antonio-Javier [1 ]
Calvo-Zaragoza, Jorge [1 ]
Fisher, Robert B. [2 ]
机构
[1] Univ Alicante, Dept Software & Comp Syst, Alicante 03690, Spain
[2] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
关键词
Neural networks; Training; Task analysis; Adaptation models; Classification algorithms; Machine learning; Feature extraction; Convolutional neural networks (CNNs); domain adaptation (DA); incremental labeling; neural networks; self-labeling; unsupervised learning;
D O I
10.1109/TNNLS.2020.3025954
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of supervised statistical learning, it is typically assumed that the training set comes from the same distribution that draws the test samples. When this is not the case, the behavior of the learned model is unpredictable and becomes dependent upon the degree of similarity between the distribution of the training set and the distribution of the test set. One of the research topics that investigates this scenario is referred to as domain adaptation (DA). Deep neural networks brought dramatic advances in pattern recognition and that is why there have been many attempts to provide good DA algorithms for these models. Herein we take a different avenue and approach the problem from an incremental point of view, where the model is adapted to the new domain iteratively. We make use of an existing unsupervised domain-adaptation algorithm to identify the target samples on which there is greater confidence about their true label. The output of the model is analyzed in different ways to determine the candidate samples. The selected samples are then added to the source training set by self-labeling, and the process is repeated until all target samples are labeled. This approach implements a form of adversarial training in which, by moving the self-labeled samples from the target to the source set, the DA algorithm is forced to look for new features after each iteration. Our results report a clear improvement with respect to the non-incremental case in several data sets, also outperforming other state-of-the-art DA algorithms.
引用
收藏
页码:4864 / 4878
页数:15
相关论文
共 50 条
  • [41] Unsupervised Domain Adaptation With Adversarial Residual Transform Networks
    Cai, Guanyu
    Wang, Yuqin
    He, Lianghua
    Zhou, MengChu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (08) : 3073 - 3086
  • [42] Cross-Mode Knowledge Adaptation for Bike Sharing Demand Prediction Using Domain-Adversarial Graph Neural Networks
    Liang, Yuebing
    Huang, Guan
    Zhao, Zhan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3642 - 3653
  • [43] PALMPRINT ANTI-SPOOFING BASED ON DOMAIN-ADVERSARIAL TRAINING AND ONLINE TRIPLET MINING
    Yao, Dingyi
    Shao, Huikai
    Zhong, Dexing
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1235 - 1239
  • [44] Improving Stain Invariance of CNNs for Segmentation by Fusing Channel Attention and Domain-Adversarial Training
    Abutalipl, Kudaibergen
    Saeedl, Numan
    Khanl, Mustacieem
    El Saddik, Abdulmotaleb
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1176 - 1198
  • [45] Fault Diagnosis of Rotating Machinery based on Domain Adversarial Training of Neural Networks
    Di, Yun
    Yang, Rui
    Huang, Mengjie
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [46] Cross-project concurrency bug prediction using domain-adversarial neural network ☆
    Qin, Fangyun
    Zheng, Zheng
    Sui, Yulei
    Gong, Siqian
    Shi, Zhiping
    Trivedi, Kishor S.
    JOURNAL OF SYSTEMS AND SOFTWARE, 2024, 214
  • [47] Multiple Classifiers Based Adversarial Training for Unsupervised Domain Adaptation
    Yang, Yiju
    Kim, Taejoon
    Wang, Guanghui
    2022 19TH CONFERENCE ON ROBOTS AND VISION (CRV 2022), 2022, : 40 - 47
  • [48] Improving fake news detection with domain-adversarial and graph-attention neural network
    Yuan, Hua
    Zheng, Jie
    Ye, Qiongwei
    Qian, Yu
    Zhang, Yan
    DECISION SUPPORT SYSTEMS, 2021, 151
  • [49] Low-supervised domain-adversarial neural network for cross-domain mooring line failure detection
    Xie, Yajuan
    Tang, Hesheng
    APPLIED OCEAN RESEARCH, 2024, 149
  • [50] Rotor Fault Diagnosis Using Domain-Adversarial Neural Network with Time-Frequency Analysis
    Xu, Yongjie
    Liu, Jingze
    Wan, Zhou
    Zhang, Dahai
    Jiang, Dong
    MACHINES, 2022, 10 (08)