Incremental Unsupervised Domain-Adversarial Training of Neural Networks

被引:29
|
作者
Gallego, Antonio-Javier [1 ]
Calvo-Zaragoza, Jorge [1 ]
Fisher, Robert B. [2 ]
机构
[1] Univ Alicante, Dept Software & Comp Syst, Alicante 03690, Spain
[2] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
关键词
Neural networks; Training; Task analysis; Adaptation models; Classification algorithms; Machine learning; Feature extraction; Convolutional neural networks (CNNs); domain adaptation (DA); incremental labeling; neural networks; self-labeling; unsupervised learning;
D O I
10.1109/TNNLS.2020.3025954
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of supervised statistical learning, it is typically assumed that the training set comes from the same distribution that draws the test samples. When this is not the case, the behavior of the learned model is unpredictable and becomes dependent upon the degree of similarity between the distribution of the training set and the distribution of the test set. One of the research topics that investigates this scenario is referred to as domain adaptation (DA). Deep neural networks brought dramatic advances in pattern recognition and that is why there have been many attempts to provide good DA algorithms for these models. Herein we take a different avenue and approach the problem from an incremental point of view, where the model is adapted to the new domain iteratively. We make use of an existing unsupervised domain-adaptation algorithm to identify the target samples on which there is greater confidence about their true label. The output of the model is analyzed in different ways to determine the candidate samples. The selected samples are then added to the source training set by self-labeling, and the process is repeated until all target samples are labeled. This approach implements a form of adversarial training in which, by moving the self-labeled samples from the target to the source set, the DA algorithm is forced to look for new features after each iteration. Our results report a clear improvement with respect to the non-incremental case in several data sets, also outperforming other state-of-the-art DA algorithms.
引用
收藏
页码:4864 / 4878
页数:15
相关论文
共 50 条
  • [1] Domain-Adversarial Neural Networks for Deforestation Detection in Tropical Forests
    Soto, Pedro J.
    Costa, Gilson A.
    Feitosa, Raul Q.
    Ortega, Mabel X.
    Bermudez, Jose D.
    Turnes, Javier N.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Unsupervised Gait Phase Estimation With Domain-Adversarial Neural Network and Adaptive Window
    Choi, Wonseok
    Yang, Wonseok
    Na, Jaeyoung
    Park, Juneil
    Lee, Giuk
    Nam, Woochul
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (07) : 3373 - 3384
  • [3] Unsupervised Domain Adaptation With Adversarial Residual Transform Networks
    Cai, Guanyu
    Wang, Yuqin
    He, Lianghua
    Zhou, MengChu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (08) : 3073 - 3086
  • [4] Domain-Adversarial Network Alignment
    Hong, Huiting
    Li, Xin
    Pan, Yuangang
    Tsang, Ivor W.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3211 - 3224
  • [5] Condition Monitoring using Domain-Adversarial Networks with Convolutional Kernel Features
    Caceres-Castellanos, Cesar
    Fehsenfeld, Moritz
    Kortmann, Karl-Philipp
    IFAC PAPERSONLINE, 2023, 56 (02): : 7746 - 7752
  • [6] Domain-Adversarial Training for Session Independent EMG-based Speech Recognition
    Wand, Michael
    Schultz, Tanja
    Schmidhuber, Jurgen
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 3167 - 3171
  • [7] Divergence-Agnostic Unsupervised Domain Adaptation by Adversarial Attacks
    Li, Jingjing
    Du, Zhekai
    Zhu, Lei
    Ding, Zhengming
    Lu, Ke
    Shen, Heng Tao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8196 - 8211
  • [8] Knowledge Exchange Between Domain-Adversarial and Private Networks Improves Open Set Image Classification
    Zhou, Haohong
    Azzam, Mohamed
    Zhong, Jian
    Liu, Cheng
    Wu, Si
    Wong, Hau-San
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5807 - 5818
  • [9] Dynamic Balanced Domain-Adversarial Networks for Cross-Domain Fault Diagnosis of Train Bearings
    Ren, He
    Wang, Jun
    Dai, Jun
    Zhu, Zhongkui
    Liu, Jinzhao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [10] Training Robust Deep Neural Networks via Adversarial Noise Propagation
    Liu, Aishan
    Liu, Xianglong
    Yu, Hang
    Zhang, Chongzhi
    Liu, Qiang
    Tao, Dacheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5769 - 5781