Recursive elimination-election algorithms for wrapper feature selection

被引:27
|
作者
Liu, Wei [1 ]
Wang, Jianyu [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
关键词
Wrapper feature selection; Classification; Recursion technique; High dimensionality; PARTICLE SWARM OPTIMIZATION; FLOATING SEARCH METHODS; GENETIC ALGORITHM; CLASSIFICATION;
D O I
10.1016/j.asoc.2021.107956
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For classification tasks in machine learning, this paper proposes a brand-new wrapper feature selection algorithm prototype named recursive elimination-election (REE), which is conceived in a simple but exquisite structure inspired by the recursion technique in computer science. Prevalent metaheuristic methods such as differential evolution (DE), particle swarm optimization (PSO), etc., from evolutionary computation (EC) and swarm intelligence (SI) communities have recently been widely applied to feature selection research, but suffer from severe drawbacks including but not limited to low efficient binary representation transformation, poor population diversity, excessive control parameter adjustments and sophisticated mechanisms. Instead, REE is organically constructed with an ordinary subset representation of feature indexes, simple operators, getting rid of extra control parameters. Specifically, REE is assembled of two basic recursive sub-algorithms, i.e., recursive random bisection elimination (RRBE) and recursive greedy binary election (RGBE), which somewhat embody the idea of "divide-and-conquer". By inspecting smaller and potential feature subsets in recursive ways, better subsets are returned automatically. A comprehensive experimental study was conducted on 14 UCI and ASU benchmark datasets with feature sizes ranging from dozens to thousands by using REE together with 6 state-of-the-art metaheuristic algorithms for comparison. The results show that the proposed REE has competitive search ability for feature selection problems, and it is especially prominent in handling high-dimensional datasets. Therefore, REE is promising to become a wrapper feature selection search paradigm with low solution cost and high efficiency. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A new penalty-based wrapper fitness function for feature subset selection with evolutionary algorithms
    Chakraborty, Basabi
    Kawamura, Atsushi
    JOURNAL OF INFORMATION AND TELECOMMUNICATION, 2018, 2 (02) : 163 - 180
  • [32] Wrapper feature selection with partially labeled data
    Feofanov, Vasilii
    Devijver, Emilie
    Amini, Massih-Reza
    APPLIED INTELLIGENCE, 2022, 52 (11) : 12316 - 12329
  • [33] GA-SVM wrapper for feature selection
    Qiao, LY
    Ma, YT
    Peng, XY
    ISTM/2005: 6th International Symposium on Test and Measurement, Vols 1-9, Conference Proceedings, 2005, : 8723 - 8726
  • [34] A wrapper for feature selection based on mutual information
    Huang, Jinjie
    Cai, Yunze
    Xu, Xiaoming
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 618 - +
  • [35] Combining multiple classifiers for wrapper feature selection
    Chrysostomou, Kyriacos
    Chen, Sherry Y.
    Liu, Xiaohui
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2008, 1 (01) : 91 - 102
  • [36] Ensemble based on GA wrapper feature selection
    Yu, Enzhe
    Cho, Sungzoon
    COMPUTERS & INDUSTRIAL ENGINEERING, 2006, 51 (01) : 111 - 116
  • [37] Wrapper feature selection with partially labeled data
    Vasilii Feofanov
    Emilie Devijver
    Massih-Reza Amini
    Applied Intelligence, 2022, 52 : 12316 - 12329
  • [38] Whale optimization approaches for wrapper feature selection
    Mafarja, Majdi
    Mirjalili, Seyedali
    APPLIED SOFT COMPUTING, 2018, 62 : 441 - 453
  • [39] Experimental feature selection using the wrapper approach
    Baranauskas, JA
    Monard, MC
    DATA MINING, 1998, : 161 - 170
  • [40] A Model-Free Feature Selection Technique of Feature Screening and Random Forest-Based Recursive Feature Elimination
    Xia, Siwei
    Yang, Yuehan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023