VARIATIONAL DISCRETIZATION OF PARABOLIC CONTROL PROBLEMS IN THE PRESENCE OF POINTWISE STATE CONSTRAINTS

被引:26
作者
Deckelnick, Klaus [1 ]
Hinze, Michael [2 ]
机构
[1] Otto von Guericke Univ, Inst Anal & Numer, Univ Pl 2, D-39106 Magdeburg, Germany
[2] Univ Hamburg, D-20146 Hamburg, Germany
关键词
Parabolic optimal control problem; State constraints; Error estimates; FINITE-ELEMENT APPROXIMATION; ELLIPTIC CONTROL-PROBLEMS; BOUNDARY CONTROL; CONVERGENCE;
D O I
10.4208/jcm.1006-m3213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parabolic optimal control problem with pointwise state constraints. The optimization problem is approximated by a discrete control problem based on a discretization of the state equation by linear finite elements in space and a discontinuous Galerkin scheme in time. Error bounds for control and state are obtained both in two and three space dimensions. These bounds follow from uniform estimates for the discretization error of the state under natural regularity requirements.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 23 条
[1]  
BONNANS JF, 2008, 6784 INRIA RR
[3]   BOUNDARY CONTROL OF SEMILINEAR ELLIPTIC-EQUATIONS WITH POINTWISE STATE CONSTRAINTS [J].
CASAS, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (04) :993-1006
[4]   Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints [J].
Casas, E .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :345-374
[5]  
CLEVER D, 2008, SPP12532001
[6]   Convergence of a finite element approximation to a state-constrained elliptic control problem [J].
Deckelnick, Klaus ;
Hinze, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :1937-1953
[7]   Finite element approximation of elliptic control problems with constraints on the gradient [J].
Deckelnick, Klaus ;
Gunther, Andreas ;
Hinze, Michael .
NUMERISCHE MATHEMATIK, 2009, 111 (03) :335-350
[8]  
DELOSREYES JC, 2008, OPTIMALITY CONDITION
[9]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .2. OPTIMAL ERROR-ESTIMATES IN L-INFINITY-L(2) AND L-INFINITY-L-INFINITY [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :706-740
[10]   Controlling transport phenomena in the Czochralski crystal growth process [J].
Gunzburger, M ;
Ozugurlu, E ;
Turner, J ;
Zhang, H .
JOURNAL OF CRYSTAL GROWTH, 2002, 234 (01) :47-62