Robust Global Stabilization of the DC-DC Boost Converter via Hybrid Control

被引:79
作者
Theunisse, Thomas A. F. [1 ]
Chai, Jun [2 ]
Sanfelice, Ricardo G. [2 ]
Heemels, W. P. Maurice H. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Control Syst Technol Grp, NL-5600 MB Eindhoven, Netherlands
[2] Univ Calif Santa Cruz, Dept Comp Engn, Santa Cruz, CA 95064 USA
关键词
Boost converter; DC-DC converters; hybrid control; robustness; stability; STABILITY; NETWORKS; SYSTEMS;
D O I
10.1109/TCSI.2015.2413154
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the modeling and (robust) control of a DC-DC Boost converter. In particular, we derive a mathematical model consisting of a constrained switched differential inclusion that includes all possible modes of operation of the converter. The obtained model is carefully selected to be amenable for the study of various important robustness properties. For this model, we design a control algorithm that induces robust, global asymptotic stability of a desired output voltage value. The guaranteed robustness properties ensure proper operation of the converter in the presence of noise in the state, unmodeled dynamics, and spatial regularization to reduce the high rate of switching. The establishment of these properties is enabled by recent tools for the study of robust stability in hybrid systems. Simulations illustrating the main results are included.
引用
收藏
页码:1052 / 1061
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 1988, Springer Series in Soviet Mathematics
[2]  
Buisson J, 2005, LECT NOTES COMPUT SC, V3414, P184
[3]   Switched networks and complementarity [J].
Çamlibel, MK ;
Heemels, WPMH ;
van der Schaft, AJ ;
Schumacher, JM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2003, 50 (08) :1036-1046
[4]   A Hamiltonian viewpoint in the modeling of switching power converters [J].
Escobar, G ;
van der Schaft, AJ ;
Ortega, R .
AUTOMATICA, 1999, 35 (03) :445-452
[5]  
Estevez Schwarz D., 2000, THESIS HUMBOLDT U BE
[6]   Linear Passive Networks With Ideal Switches: Consistent Initial Conditions and State Discontinuities [J].
Frasca, Roberto ;
Camlibel, M. Kanat ;
Goknar, I. Cem ;
Iannelli, Luigi ;
Vasca, Francesco .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (12) :3138-3151
[7]  
Geyer T, 2004, LECT NOTES COMPUT SC, V2993, P342
[8]   Solutions to hybrid inclusions via set and graphical convergence with stability theory applications [J].
Goebel, R ;
Teel, AR .
AUTOMATICA, 2006, 42 (04) :573-587
[9]  
Goebel R., 2012, Hybrid Dynamical Systems: Modeling, Stability, and Robustness
[10]  
Heemels WPMH, 2003, LECT NOTES COMPUT SC, V2623, P249