Quantum integrability of quadratic Killing tensors

被引:35
作者
Duval, C
Valent, G
机构
[1] Univ Aix Marseille 1, Ctr Phys Theor, CNRS, UMR 6207, F-13288 Marseille, France
[2] Univ Aix Marseille 2, Ctr Phys Theor, CNRS, UMR 6207, F-13288 Marseille, France
[3] Univ Sud Toulon Var, Ctr Phys Theor, CNRS, UMR 6207, F-13288 Marseille, France
[4] Univ Paris 06, Phys Theor & Hautes Energies Lab, CNRS, UMR 7589, F-75251 Paris, France
[5] Univ Paris 07, Phys Theor & Hautes Energies Lab, CNRS, UMR 7589, F-75251 Paris, France
关键词
D O I
10.1063/1.1899986
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum integrability of classical integrable systems given by quadratic Killing tensors on curved configuration spaces is investigated. It is proven that, using a "minimal" quantization scheme, quantum integrability is ensured for a large class of classic examples. (C) 2005 American Institute of Physics.
引用
收藏
页数:22
相关论文
共 39 条
[1]  
[Anonymous], MATH ANN
[2]  
[Anonymous], PROGR MATH
[3]  
Babelon O, 2003, INTRO CLASSICAL INTE
[4]  
BELLON M, HEPTH0407005
[5]   Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrodinger equation. I. The completeness and Robertson conditions [J].
Benenti, S ;
Chanu, C ;
Rastelli, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5183-5222
[6]   Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrodinger equation. II. First integrals and symmetry operators [J].
Benenti, S ;
Chanu, C ;
Rastelli, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5223-5253
[7]  
Benenti S., 1992, Rend. Semin. Matem. Univ. Polit. Torino, V50, P315
[8]  
BORDEMANN M, MATHDG0208171
[9]   Projectively equivariant quantization map [J].
Bouarroudj, S .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 51 (04) :265-274