Dramatic Change in Function and Expression Pattern of a Gene Duplicated by Polyploidy Created a Paternal Effect Gene in the Brassicaceae

被引:54
作者
Liu, Shao-Lun [1 ,2 ,3 ]
Adams, Keith L. [1 ,2 ,3 ]
机构
[1] UBC Bot Garden, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Bot, Vancouver, BC, Canada
[3] Ctr Plant Res, Vancouver, BC, Canada
关键词
gene duplication; polyploidy; neofunctionalization; paternal effects; gene expression; Brassicaceae; PHYLOGENETIC ANALYSIS; GENOME DUPLICATIONS; SIGNAL-TRANSDUCTION; ARABIDOPSIS; DIVERGENCE; EVOLUTION; FAMILY; SELECTION; PROTEINS; ELEMENTS;
D O I
10.1093/molbev/msq169
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
New gene formation by polyploidy has been an ongoing process during the evolution of various eukaryotes that has contributed greatly to the large number of genes in their genomes. After duplication, some genes that are retained can acquire new functions or expression patterns, or subdivide their functions or expression patterns between duplicates. Here, we show that SHORT SUSPENSOR (SSP) and Brassinosteroid Kinase 1 (BSK1) are paralogs duplicated by a polyploidy event that occurred in the Brassicaceae family about 23 Ma. SSP is involved in paternal control of zygote elongation in Arabidopsis thaliana by transcription in the sperm cells of pollen and then translation in the zygote, whereas BSK1 is involved in brassinosteroid signal transduction. Comparative analysis of expression in 63 different organs and developmental stages revealed that BSK1 and SSP have opposite expression patterns in pollen compared with all other parts of the plant. We determined that BSK1 retains the ancestral expression pattern and function. Thus, SSP has diverged in function after duplication from a component of the brassinosteroid signaling pathway to a paternal regulator of the timing of zygote elongation. The ancestral function of SSP was lost by deletions in the kinase domain. Our sequence rate analysis revealed that SSP but not BSK1 has experienced a greatly accelerated rate of amino acid sequence changes and relaxation of purifying selection. In addition, SSP has been duplicated to create a new gene (SSP-like1) with a completely different expression pattern, a shorter coding sequence that has lost a critical functional domain, and a greatly accelerated rate of amino acid sequence evolution along with evidence for positive selection, together indicative of neofunctionalization. This study illustrates two dramatic examples of neofunctionalization following gene duplication by complete changes in expression pattern and function. In addition, our findings indicate that paternal control of zygote elongation by SSP is an evolutionarily recent innovation in the Brassicaceae family.
引用
收藏
页码:2817 / 2828
页数:12
相关论文
共 50 条
[1]   Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites [J].
Anisimova, Maria ;
Yang, Ziheng .
MOLECULAR BIOLOGY AND EVOLUTION, 2007, 24 (05) :1219-1228
[2]  
[Anonymous], 2006, THESIS U TEXAS AUSTI
[3]   Toward a global phylogeny of the Brassicaceae [J].
Bailey, C. Donovan ;
Koch, Marcus A. ;
Mayer, Michael ;
Mummenhoff, Klaus ;
O'Kane, Steve L., Jr. ;
Warwick, Suzanne I. ;
Windham, Michael D. ;
Al-Shehbaz, Ihsan A. .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (11) :2142-2160
[4]   Paleopolyploidy in the Brassicales: Analyses of the Cleome Transcriptome Elucidate the History of Genome Duplications in Arabidopsis and Other Brassicales [J].
Barker, Michael S. ;
Vogel, Heiko ;
Schranz, M. Eric .
GENOME BIOLOGY AND EVOLUTION, 2009, 1 :391-399
[5]   Paternal Control of Embryonic Patterning in Arabidopsis thaliana [J].
Bayer, Martin ;
Nawy, Tal ;
Giglione, Carmela ;
Galli, Mary ;
Meinnel, Thierry ;
Lukowitz, Wolfgang .
SCIENCE, 2009, 323 (5920) :1485-1488
[6]   transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences [J].
Bininda-Emonds, ORP .
BMC BIOINFORMATICS, 2005, 6 (1)
[7]   Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1679-1691
[8]   A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome [J].
Blanc, G ;
Hokamp, K ;
Wolfe, KH .
GENOME RESEARCH, 2003, 13 (02) :137-144
[9]   Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J].
Bowers, JE ;
Chapman, BA ;
Rong, JK ;
Paterson, AH .
NATURE, 2003, 422 (6930) :433-438
[10]   Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana [J].
Casneuf, T ;
De Bodt, S ;
Raes, J ;
Maere, S ;
Van de Peer, Y .
GENOME BIOLOGY, 2006, 7 (02)