共 50 条
Patterns of host gene expression associated with harboring a foregut microbial community
被引:5
作者:
Kohl, Kevin D.
[1
]
Oakeson, Kelly F.
[2
]
Dunn, Diane
[4
]
Meyerholz, David K.
[3
]
Dale, Colin
[2
]
Weiss, Robert B.
[4
]
Dearing, M. Denise
[2
]
机构:
[1] Vanderbilt Univ, Dept Biol Sci, 465 21st Ave South, Nashville, TN 37235 USA
[2] Univ Utah, Dept Biol, 257 South 1400 East, Salt Lake City, UT 84112 USA
[3] Univ Iowa, Dept Pathol, 200 Hawkins Dr, Iowa City, IA 52242 USA
[4] Univ Utah, Dept Human Genet, 15 North 2030 East, Salt Lake City, UT 84112 USA
来源:
基金:
美国国家科学基金会;
美国国家卫生研究院;
关键词:
Host-microbe interactions;
Herbivore;
Woodrat;
BOVINE RUMEN EPITHELIUM;
GASTROINTESTINAL-TRACT;
WESTERN DIET;
MICE;
METABOLISM;
EVOLUTION;
MUSCLE;
RATS;
GLYCOSYLTRANSFERASE;
ABSORPTION;
D O I:
10.1186/s12864-017-4101-z
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Background: Harboring foregut microbial communities is considered a key innovation that allows herbivorous mammals to colonize new ecological niches. However, the functions of these chambers have only been well studied at the molecular level in ruminants. Here, we investigate gene expression in the foregut chamber of herbivorous rodents and ask whether these gene expression patterns are consistent with results in ruminants. We compared gene expression in foregut tissues of two rodent species: Stephen's woodrat (Neotoma stephensi), which harbors a dense foregut microbial community, and the lab rat (Rattus norvegicus), which lacks such a community. Results: We found that woodrats have higher abundances of transcripts associated with smooth muscle processes, specifically a higher expression of the smoothelin-like 1 gene, which may assist in contractile properties of this tissue to retain food material in the foregut chamber. The expression of genes associated with keratinization and cornification exhibited a complex pattern of differences between the two species, suggesting distinct molecular mechanisms. Lab rats exhibited higher abundances of transcripts associated with immune function, likely to inhibit microbial growth in the foregut of this species. Conclusions: Some of our results were consistent with previous findings in ruminants (high expression of facilitative glucose transporters, lower expression of B4galnt2), suggestive of possible convergent evolution, while other results were unclear, and perhaps represent novel host-microbe interactions in rodents. Overall, our results suggest that harboring a foregut microbiota is associated with changes to the functions and host-microbe interactions of the foregut tissues.
引用
收藏
页数:13
相关论文
共 50 条