PANDA-view: an easy-to-use tool for statistical analysis and visualization of quantitative proteomics data

被引:17
作者
Chang, Cheng [1 ]
Xu, Kaikun [1 ]
Guo, Chaoping [2 ]
Wang, Jinxia [1 ,3 ]
Yan, Qi [2 ]
Zhang, Jian [2 ]
He, Fuchu [1 ]
Zhu, Yunping [1 ]
机构
[1] Natl Ctr Prot Sci Beijing, Beijing Inst Life, Beijing Proteome Res Ctr, State Key Lab Prote, Beijing 102206, Peoples R China
[2] Chinese Acad Sci, Inst Software, Beijing Key Lab Human Comp Interact, Beijing 100190, Peoples R China
[3] Shandong Drug & Food Vocat Coll, Drug Res & Dev Ctr, Weihai 264210, Peoples R China
基金
中国国家自然科学基金;
关键词
FALSE DISCOVERY RATE;
D O I
10.1093/bioinformatics/bty408
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Compared with the numerous software tools developed for identification and quantification of omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for proteinpeptide-spectrum representation of the quantitative proteomics data.
引用
收藏
页码:3594 / 3596
页数:3
相关论文
共 13 条
[1]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Current challenges in software solutions for mass spectrometry-based quantitative proteomics [J].
Cappadona, Salvatore ;
Baker, Peter R. ;
Cutillas, Pedro R. ;
Heck, Albert J. R. ;
van Breukelen, Bas .
AMINO ACIDS, 2012, 43 (03) :1087-1108
[4]  
Chang C, 2018, BIORXIV, DOI [10.1101/332957., DOI 10.1101/332957]
[5]   MULTIPLE COMPARISONS AMONG MEANS [J].
DUNN, OJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1961, 56 (293) :52-&
[6]  
Rigbolt K.T. G., 2011, Mol. Cell. Proteomics, V10, P10, DOI DOI 10.1074/MCP.0110.007450
[7]   Quantitative proteomics: challenges and opportunities in basic and applied research [J].
Schubert, Olga T. ;
Rost, Hannes L. ;
Collins, Ben C. ;
Rosenberger, George ;
Aebersold, Ruedi .
NATURE PROTOCOLS, 2017, 12 (07) :1289-1294
[8]   DanteR: an extensible R-based tool for quantitative analysis of -omics data [J].
Taverner, Tom ;
Karpievitch, Yuliya V. ;
Polpitiya, Ashoka D. ;
Brown, Joseph N. ;
Dabney, Alan R. ;
Anderson, Gordon A. ;
Smith, Richard D. .
BIOINFORMATICS, 2012, 28 (18) :2404-2406
[9]   Significance analysis of microarrays applied to the ionizing radiation response [J].
Tusher, VG ;
Tibshirani, R ;
Chu, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (09) :5116-5121
[10]  
Tyanova S, 2016, NAT METHODS, V13, P731, DOI [10.1038/NMETH.3901, 10.1038/nmeth.3901]