Time-Domain-Multiplexed Measurement-Based Quantum Operations with 25-MHz Clock Frequency

被引:53
作者
Asavanant, Warit [1 ]
Charoensombutamon, Baramee [1 ]
Yokoyama, Shota [2 ]
Ebihara, Takeru [1 ]
Nakamura, Tomohiro [1 ]
Alexander, Rafael N. [3 ,4 ]
Endo, Mamoru [1 ]
Yoshikawa, Jun-ichi [1 ]
Menicucci, Nicolas C. [4 ]
Yonezawa, Hidehiro [2 ]
Furusawa, Akira [1 ,5 ]
机构
[1] Univ Tokyo, Sch Engn, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Univ New South Wales, Sch Engn & Informat Technol, Ctr Quantum Computat & Commun Technol, Canberra, ACT 2600, Australia
[3] Univ New Mexico, Dept Phys & Astron, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[4] RMIT Univ, Sch Sci, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3001, Australia
[5] RIKEN Ctr Quantum Comp, Opt Quantum Comp Res Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
基金
日本科学技术振兴机构; 日本学术振兴会; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
QUBIT; COMPUTATION; GENERATION; STATES;
D O I
10.1103/PhysRevApplied.16.034005
中图分类号
O59 [应用物理学];
学科分类号
摘要
Continuous-variable optical quantum computation has seen much progress in recent years. In particular, cluster states-the universal resource for measurement-based quantum computation-have been realized in a scalable fashion using the time-domain multiplexing method. To utilize the cluster states in actual quantum computation, the measurement bases need to be programmed according to the desired computation. In addition, as the information is encoded in time in the time-domain multiplexing method, the measurement bases must be dynamically changed in time to fully utilize the large-scale cluster states. Here we report demonstrations of quantum operations using time-domain-multiplexed cluster states with a clock frequency of 25 MHz. This is achieved by our combining the cluster state-generation setup with the setup to change the measurement basis in the time domain. We also formulate a method to evaluate and verify continuous-variable operations where the quantum entanglements in the cluster states are utilized. Therefore, we demonstrate the implementation of quantum operations on scalable continuous-variable cluster-state architectures. The results in this work are compatible with the developing nonlinear feedforward and non-Gaussian state generation technology, which brings the realization of the large-scale fault-tolerant universal optical quantum computer closer to reality.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Universal quantum computation with temporal-mode bilayer square lattices [J].
Alexander, Rafael N. ;
Yokoyama, Shota ;
Furusawa, Akira ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW A, 2018, 97 (03)
[2]   Randomized benchmarking in measurement-based quantum computing [J].
Alexander, Rafael N. ;
Turner, Peter S. ;
Bartlett, Stephen D. .
PHYSICAL REVIEW A, 2016, 94 (03)
[3]   Generation of time-domain-multiplexed two-dimensional cluster state [J].
Asavanant, Warit ;
Shiozawa, Yu ;
Yokoyama, Shota ;
Charoensombutamon, Baramee ;
Emura, Hiroki ;
Alexander, Rafael N. ;
Takeda, Shuntaro ;
Yoshikawa, Jun-ichi ;
Menicucci, Nicolas C. ;
Yonezawa, Hidehiro ;
Furusawa, Akira .
SCIENCE, 2019, 366 (6463) :373-+
[4]   All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code [J].
Baragiola, Ben Q. ;
Pantaleoni, Giacomo ;
Alexander, Rafael N. ;
Karanjai, Angela ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW LETTERS, 2019, 123 (20)
[5]   Quantum error correction of a qubit encoded in grid states of an oscillator [J].
Campagne-Ibarcq, P. ;
Eickbusch, A. ;
Touzard, S. ;
Zalys-Geller, E. ;
Frattini, N. E. ;
Sivak, V. V. ;
Reinhold, P. ;
Puri, S. ;
Shankar, S. ;
Schoelkopf, R. J. ;
Frunzio, L. ;
Mirrahimi, M. ;
Devoret, M. H. .
NATURE, 2020, 584 (7821) :368-+
[6]   Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb [J].
Chen, Moran ;
Menicucci, Nicolas C. ;
Pfister, Olivier .
PHYSICAL REVIEW LETTERS, 2014, 112 (12)
[7]   Encoding a qubit in a trapped-ion mechanical oscillator [J].
Fluhmann, C. ;
Nguyen, T. L. ;
Marinelli, M. ;
Negnevitsky, V. ;
Mehta, K. ;
Home, J. P. .
NATURE, 2019, 566 (7745) :513-+
[8]   High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction [J].
Fukui, Kosuke ;
Tomita, Akihisa ;
Okamoto, Atsushi ;
Fujii, Keisuke .
PHYSICAL REVIEW X, 2018, 8 (02)
[9]   Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor [J].
Gong, Ming ;
Chen, Ming-Cheng ;
Zheng, Yarui ;
Wang, Shiyu ;
Zha, Chen ;
Deng, Hui ;
Yan, Zhiguang ;
Rong, Hao ;
Wu, Yulin ;
Li, Shaowei ;
Chen, Fusheng ;
Zhao, Youwei ;
Liang, Futian ;
Lin, Jin ;
Xu, Yu ;
Guo, Cheng ;
Sun, Lihua ;
Castellano, Anthony D. ;
Wang, Haohua ;
Peng, Chengzhi ;
Lu, Chao-Yang ;
Zhu, Xiaobo ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2019, 122 (11)
[10]   Encoding a qubit in an oscillator [J].
Gottesman, D ;
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW A, 2001, 64 (01) :123101-1231021