Asymptotic stabilization with phase of periodic orbits of three-dimensional Hamiltonian systems

被引:5
作者
Tudoran, Razvan M. [1 ]
机构
[1] West Univ Timisoara, Fac Math & Comp Sci, Dept Math, Blvd Vasile Parvan 4, Timisoara 300223, Romania
关键词
Hamiltonian dynamics; Periodic orbits; Asymptotic stability with phase; INTEGRABLE SYSTEMS; GEOMETRY; DYNAMICS; VERSION;
D O I
10.1016/j.geomphys.2017.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a geometric method to stabilize asymptotically with phase an arbitrary fixed periodic orbit of a locally generic three-dimensional Hamiltonian dynamical system. The main advantage of this method is that one need not to know a parameterization of the orbit to be stabilized, but only the values of the Hamiltonian and a fixed Casimir (of the Poisson configuration manifold) at that orbit. The stabilization procedure is illustrated in the case of the Rilcitalce model of geomagnetic reversal. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2005, Courant Lecture Notes in Mathematics
[2]   Hamiltonian equations in R3 [J].
Ay, A ;
Gürses, M ;
Zheltukhin, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) :5688-5705
[3]   NEW ASPECTS ON THE GEOMETRY AND DYNAMICS OF QUADRATIC HAMILTONIAN SYSTEMS ON (so(3))* [J].
Daniasa, Cora ;
Girban, Anania ;
Tudoran, Razvan M. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (08) :1695-1721
[4]  
Dufour J.-P., 2005, Progress in Mathematics, V242
[5]  
Hartman P., 2002, CLASSICS APPL MATH, V38
[6]  
Marsden JE., 1999, INTRO MECH SYMMETRY, V17
[7]  
Ratiu TS, 2005, LOND MATH S, V306, P23
[8]  
Rikitake T., 1958, Math. proc. camb. philos. soc., V54, P89, DOI [DOI 10.1017/S0305004100033223, 10.1017/S0305004100033223]
[9]   ON THE CONTROL OF STABILITY OF PERIODIC ORBITS OF COMPLETELY INTEGRABLE SYSTEMS [J].
Tudoran, Razvan M. .
JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (01) :109-124
[10]   On the completely integrable case of the Rossler system [J].
Tudoran, Razvan M. ;
Girban, Anania .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (05)