Efimov-like states and quantum funneling effects on synthetic hyperbolic surfaces

被引:12
作者
Zhang, Ren [1 ,2 ]
Lv, Chenwei [2 ]
Yan, Yangqian [2 ]
Zhou, Qi [2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Xian 710049, Peoples R China
[2] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[3] Purdue Univ, Purdue Quantum Sci & Engn Inst, W Lafayette, IN 47907 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Efimov-like states; Discrete scaling symmetry; Quantum funneling effects; Hyperbolic surfaces; EDGE STATES; SIMULATIONS; ATOMS; GAS;
D O I
10.1016/j.scib.2021.06.017
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Engineering lattice models with tailored inter-site tunnelings and onsite energies could synthesize essentially arbitrary Riemannian surfaces with highly tunable local curvatures. Here, we point out that discrete synthetic Poincare half-planes and Poincare disks, which are created by lattices in flat planes, support infinitely degenerate eigenstates for any nonzero eigenenergies. Such Efimov-like states exhibit a discrete scaling symmetry and imply an unprecedented apparatus for studying quantum anomaly using hyperbolic surfaces. Furthermore, all eigenstates are exponentially localized in the hyperbolic coordinates, signifying the first example of quantum funneling effects in Hermitian systems. As such, any initial wave packet travels towards the edge of the Poincare half-plane or its equivalent on the Poincare disk, delivering an efficient scheme to harvest light and atoms in two dimensions. Our findings unfold the intriguing properties of hyperbolic spaces and suggest that Efimov states may be regarded as a projection from a curved space with an extra dimension. (c) 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:1967 / 1972
页数:6
相关论文
共 50 条
  • [1] Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices
    Aidelsburger, M.
    Atala, M.
    Lohse, M.
    Barreiro, J. T.
    Paredes, B.
    Bloch, I.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (18)
  • [2] Correlated Dynamics in a Synthetic Lattice of Momentum States
    An, Fangzhao Alex
    Meier, Eric J.
    Ang'ong'a, Jackson
    Gadway, Bryce
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (04)
  • [3] Anomalous commutator algebra for conformal quantum mechanics -: art. no. 045018
    Añaños, GNJ
    Camblong, HE
    Gorrichátegui, C
    Hernández, E
    Ordóñez, CR
    [J]. PHYSICAL REVIEW D, 2003, 67 (04):
  • [4] A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice
    Bakr, Waseem S.
    Gillen, Jonathon I.
    Peng, Amy
    Foelling, Simon
    Greiner, Markus
    [J]. NATURE, 2009, 462 (7269) : 74 - U80
  • [5] CHAOS ON THE PSEUDOSPHERE
    BALAZS, NL
    VOROS, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03): : 109 - 240
  • [6] Linear and nonlinear optics in curved space
    Batz, S.
    Peschel, U.
    [J]. PHYSICAL REVIEW A, 2008, 78 (04):
  • [7] Control of light by curved space in nanophotonic structures
    Bekenstein, Rivka
    Kabessa, Yossef
    Sharabi, Yonatan
    Tal, Or
    Engheta, Nader
    Eisenstein, Gadi
    Agranat, Aharon J.
    Segev, Mordechai
    [J]. NATURE PHOTONICS, 2017, 11 (10) : 664 - 670
  • [8] Bekenstein R, 2015, NAT PHYS, V11, P872, DOI [10.1038/NPHYS3451, 10.1038/nphys3451]
  • [9] Quantum information processing and quantum optics with circuit quantum electrodynamics
    Blais, Alexandre
    Girvin, Steven M.
    Oliver, William D.
    [J]. NATURE PHYSICS, 2020, 16 (03) : 247 - 256
  • [10] Measurement of Optical Feshbach Resonances in an Ideal Gas
    Blatt, S.
    Nicholson, T. L.
    Bloom, B. J.
    Williams, J. R.
    Thomsen, J. W.
    Julienne, P. S.
    Ye, J.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (07)