Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea

被引:21
|
作者
Vera-Estrella, Rosario [1 ]
Barkla, Bromuyn J. [1 ]
Pantoja, Omar [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Biol Mol Plantas, Cuernavaca 62210, Morelos, Mexico
关键词
Arabidopsis thaliana; Thellungiella salsuginea; Salinity; Comparative proteomics; H+-ATPASE SUBUNIT; ABIOTIC STRESS; GENE-EXPRESSION; HALOPHYTE; MODEL; PROTEOME; GENOME; GROWTH; ELECTROPHORESIS; PHOTOSYNTHESIS;
D O I
10.1016/j.jprot.2014.05.018
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana. Biological significance There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na+ levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity tolerance mechanisms. In this study, employing two closely related species which differ markedly in their salt-tolerance, we carried out a quantitative proteomic approach using 2D-DIGE to identify salt-responsive proteins and compare and contrast the differences between the two plant species. Our work complements a previous study using iTRAQ technology (34) and highlights the benefits of using alternative technologies and approaches to gain a broader representation of the salt-responsive proteome in these species. This article is part of a Special Issue entitled: Proteomics, mass spectrometry and peptidomics, Cancun 2013. Guest Editors: Cesar Lopez-Camarillo, Victoria Pando-Robles and Bronwyn Jane Barkla. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 127
页数:15
相关论文
共 29 条
  • [1] Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea
    Prerostova, Sylva
    Dobrev, Petre I.
    Gaudinova, Alena
    Hosek, Petr
    Soudek, Petr
    Knirsch, Vojtech
    Vankova, Radomira
    PLANT SCIENCE, 2017, 264 : 188 - 198
  • [2] Differential Regulation of NAPDH Oxidases in Salt-Tolerant Eutrema salsugineum and Salt-Sensitive Arabidopsis thaliana
    Pilarska, Maria
    Bartels, Dorothea
    Niewiadomska, Ewa
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [3] Transcriptional analysis of salt-responsive genes to salinity stress in three salt-tolerant and salt-sensitive Barely cultivars
    Mohammadi, Seyyed Abolghasem
    Hamian, Samira
    Vahed, Mohammad Moghaddam
    Bandehagh, Ali
    Gohari, Gholamreza
    Janda, Tibor
    SOUTH AFRICAN JOURNAL OF BOTANY, 2021, 141 : 457 - 465
  • [4] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Fang, Xin
    Mo, Junjie
    Zhou, Hongkai
    Shen, Xuefeng
    Xie, Yuling
    Xu, Jianghuan
    Yang, Shan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Xin Fang
    Junjie Mo
    Hongkai Zhou
    Xuefeng Shen
    Yuling Xie
    Jianghuan Xu
    Shan Yang
    Scientific Reports, 13
  • [6] Comparative Transcriptome and Proteome Analysis of Salt-Tolerant and Salt-Sensitive Sweet Potato and Overexpression of IbNAC7 Confers Salt Tolerance in Arabidopsis
    Meng, Xiaoqing
    Liu, Siyuan
    Dong, Tingting
    Xu, Tao
    Ma, Daifu
    Pan, Shenyuan
    Li, Zongyun
    Zhu, Mingku
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [7] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Mingquan Wang
    Yufeng Wang
    Yifei Zhang
    Chunxia Li
    Shichen Gong
    Shuqin Yan
    Guoliang Li
    Guanghui Hu
    Honglei Ren
    Jianfei Yang
    Tao Yu
    Kejun Yang
    Genes & Genomics, 2019, 41 : 781 - 801
  • [8] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Wang, Mingquan
    Wang, Yufeng
    Zhang, Yifei
    Li, Chunxia
    Gong, Shichen
    Yan, Shuqin
    Li, Guoliang
    Hu, Guanghui
    Ren, Honglei
    Yang, Jianfei
    Yu, Tao
    Yang, Kejun
    GENES & GENOMICS, 2019, 41 (07) : 781 - 801
  • [9] Differential Accumulation Patterns of Seed Proteins in Salt-Tolerant and Salt-Sensitive Rice Lines under Varying Salinity Levels
    Singh, A.
    Arora, B.
    Matta, N. K.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2022, 24 (01): : 139 - 153
  • [10] Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage
    Vijayata Singh
    Ajit Pal Singh
    Jyoti Bhadoria
    Jitender Giri
    Jogendra Singh
    Vineeth T. V.
    P. C. Sharma
    Protoplasma, 2018, 255 : 1667 - 1681