Robustness of synchronizability in windmill networks with node failures

被引:1
作者
Zhang, Defu [1 ]
Xu, Dan [2 ]
Chen, Jing [2 ]
Sun, Weigang [1 ]
机构
[1] Hangzhou Dianzi Univ, Dept Math, Sch Sci, Hangzhou 310018, Peoples R China
[2] Zhejiang Yuying Coll Vocat Technol, Sch Informat Technol, Hangzhou 310018, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2022年 / 36卷 / 18期
基金
中国国家自然科学基金;
关键词
Synchronizability; Laplacian spectrum; windmill network; DYNAMICAL NETWORKS; COMPLEX NETWORKS;
D O I
10.1142/S0217979222500989
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, the synchronizability characterized by the Laplacian spectrum is applied to windmill networks where three types of parameters are introduced to control the number of deleted nodes. Using the network's structures, exact solutions of the Laplacian eigenvalues are obtained and metrics of the synchronizability are correspondingly shown. Relationships between the synchronizability and the introduced parameters are presented. Then, the synchronizability of models with different settings of node failures is compared. The obtained results reveal distinct synchronizabilities originating from intrinsic structures of models and the setting forms of node failures. Finally, numerical examples are provided to verify the effectiveness of theoretical analysis.
引用
收藏
页数:11
相关论文
共 24 条
  • [1] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [2] Deterministic scale-free networks
    Barabási, AL
    Ravasz, E
    Vicsek, T
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 299 (3-4) : 559 - 564
  • [3] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [4] Network synchronizability analysis: A graph-theoretic approach
    Chen, Guanrong
    Duan, Zhisheng
    [J]. CHAOS, 2008, 18 (03)
  • [5] Synchronizability of complex networks
    Comellas, Francesc
    Gago, Silvia
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (17) : 4483 - 4492
  • [6] Eigenvalue spectrum and synchronizability of multiplex chain networks
    Deng, Yang
    Jia, Zhen
    Deng, Guangming
    Zhang, Qiongfen
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 537
  • [7] Synchronization of nonlinearly coupled complex networks: Distributed impulsive method
    Ding, Dong
    Tang, Ze
    Wang, Yan
    Ji, Zhicheng
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 133
  • [8] Pinning synchronization for delayed coupling complex dynamical networks with incomplete transition rates Markovian jump
    Feng, Jianwen
    Cheng, Ke
    Wang, Jingyi
    Deng, Juan
    Zhao, Yi
    [J]. NEUROCOMPUTING, 2021, 434 : 239 - 248
  • [9] THE LAPLACIAN SPECTRUM OF A GRAPH
    GRONE, R
    MERRIS, R
    SUNDER, VS
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 218 - 238
  • [10] Synchronizability of dynamical scale-free networks subject to random errors
    Jalili, Mandi
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (23-24) : 4588 - 4595