Emulating and calibrating the multiple-fidelity Lyon-Fedder-Mobarry magnetosphere-ionosphere coupled computer model

被引:7
作者
Heaton, Matthew J. [1 ]
Kleiber, William [2 ]
Sain, Stephan R. [3 ]
Wiltberger, Michael [3 ]
机构
[1] Brigham Young Univ, Provo, UT 84602 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; Multivariate computer model; Multivariate emulator; Non-additive discrepancy; CROSS-COVARIANCE FUNCTIONS; MULTIVARIATE RANDOM-FIELDS; EFFICIENT EMULATORS; SPACE; VALIDATION;
D O I
10.1111/rssc.12064
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Lyon-Fedder-Mobarry global magnetosphere-ionosphere coupled model LFM-MIX is used to study Sun-Earth interactions by simulating geomagnetic storms. This work focuses on relating the multifidelity output from LFM-MIX to field observations of ionospheric conductance. Given a set of input values and solar wind data, LFM-MIX numerically solves the magnetohydrodynamic equations and outputs a bivariate spatiotemporal field of ionospheric energy and flux. Of particular interest here are LFM-MIX input settings required to match corresponding output with field observations. To estimate these input settings, a multivariate spatiotemporal statistical LFM-MIX emulator is constructed. The statistical emulator leverages the multiple fidelities such that the less computationally demanding yet lower fidelity LFM-MIX is used to provide estimates of the higher fidelity output. The higher fidelity LFM-MIX output is then used for calibration by using additive and non-linear discrepancy functions.
引用
收藏
页码:93 / 113
页数:21
相关论文
共 52 条
[1]   A tutorial on adaptive MCMC [J].
Andrieu, Christophe ;
Thoms, Johannes .
STATISTICS AND COMPUTING, 2008, 18 (04) :343-373
[2]  
[Anonymous], 2003, QUAL ENG
[3]  
[Anonymous], 2011, ADV CHALLENGES SPACE
[4]  
[Anonymous], SCI NEWS
[5]  
[Anonymous], SEV SPAC WEATH EVENT
[6]  
[Anonymous], 1997, Matrix Algebra From a Statistician's Perspective
[7]   A Valid Matern Class of Cross-Covariance Functions for Multivariate Random Fields With Any Number of Components [J].
Apanasovich, Tatiyana V. ;
Genton, Marc G. ;
Sun, Ying .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) :180-193
[8]   Cross-covariance functions for multivariate random fields based on latent dimensions [J].
Apanasovich, Tatiyana V. ;
Genton, Marc G. .
BIOMETRIKA, 2010, 97 (01) :15-30
[9]   On geodetic distance computations in spatial modeling [J].
Banerjee, S .
BIOMETRICS, 2005, 61 (02) :617-625
[10]  
Banerjee S., 2004, HIERARCHICAL MODELIN