On indices of subnormal subgroups of finite soluble groups

被引:1
作者
Guo, WB
Hu, B
Monakhov, VS
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[3] Gomel State Univ, Dept Math, Gomel, BELARUS
基金
中国国家自然科学基金;
关键词
finite group; index; soluble group; subnormal subgroup;
D O I
10.1081/AGB-200051156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
All groups considered in this paper are finite soluble groups. Let t(p)(G) = maxHG {j vertical bar p(j) vertical bar vertical bar vertical bar H-G:H vertical bar} and t(G) = max(p is an element of pi(G)) t(p)(G). In this paper, we study the influence of t(G) on the structure of a finite soluble group G. In particular, the hounds of the nilpotent length (derived length, p-length) of a soluble group G with t(G) <= 2 are found.
引用
收藏
页码:855 / 863
页数:9
相关论文
共 15 条
[1]   SOLVABLE LENGTH OF A SOLVABLE LINEAR GROUP [J].
DIXON, JD .
MATHEMATISCHE ZEITSCHRIFT, 1968, 107 (02) :151-&
[2]  
Gaschutz W., 1957, J REINE ANGEW MATH, V198, P87, DOI [DOI 10.1515/CRLL.1957.198.87, DOI 10.1515/CR11.1957.198.87]
[3]  
Gaschutz W., 1979, NOTES PURE MATH, V11
[4]  
GUO W, 2000, THEORY CLASSES GROUP
[5]  
HALL P, 1956, P LOND MATH SOC, V7, P1
[6]  
HUPPERT B, 1979, ENDLICHE GRUPPEN, V1
[7]  
Miao L, 2002, SIBERIAN MATH J+, V43, P92
[8]  
MONAKHOV VS, 2002, UKRAINE MATH J, V54, P950
[9]  
MONAKHOV VS, 1996, VESTI AKAD NAVUK FMN, P21
[10]   SOLUBLE LENGTH OF SOLUBLE LINEAR GROUPS [J].
NEWMAN, MF .
MATHEMATISCHE ZEITSCHRIFT, 1972, 126 (01) :59-&