Temperature-field phase diagram of extreme magnetoresistance

被引:110
作者
Tafti, Fazel Fallah [1 ]
Gibson, Quinn [1 ]
Kushwaha, Satya [1 ]
Krizan, Jason W. [1 ]
Haldolaarachchige, Neel [1 ]
Cava, Robert Joseph [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
关键词
extreme magnetoresistance; topological semimetal; orbital texture; FERMI-SURFACE; GIANT MAGNETORESISTANCE; QUANTUM OSCILLATIONS; ULTRAHIGH MOBILITY; SPIN; LASB;
D O I
10.1073/pnas.1607319113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.
引用
收藏
页码:E3475 / E3481
页数:7
相关论文
共 37 条
[1]   Correlation of crystal quality and extreme magnetoresistance of WTe2 [J].
Ali, Mazhar N. ;
Schoop, Leslie ;
Xiong, Jun ;
Flynn, Steven ;
Gibson, Quinn ;
Hirschberger, Max ;
Ong, N. P. ;
Cava, R. J. .
EPL, 2015, 110 (06)
[2]   Large, non-saturating magnetoresistance in WTe2 [J].
Ali, Mazhar N. ;
Xiong, Jun ;
Flynn, Steven ;
Tao, Jing ;
Gibson, Quinn D. ;
Schoop, Leslie M. ;
Liang, Tian ;
Haldolaarachchige, Neel ;
Hirschberger, Max ;
Ong, N. P. ;
Cava, R. J. .
NATURE, 2014, 514 (7521) :205-+
[3]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/nnano.2010.154, 10.1038/NNANO.2010.154]
[4]  
Blaha P., 2001, Calculating Cryst. Prop., V60
[5]   QUANTUM OSCILLATIONS IN ULTRASONIC-ABSORPTION AND FERMI-SURFACE OF INDIUM [J].
COWEY, JE ;
GERBER, R ;
MACKINNON, L .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1974, 4 (01) :39-46
[6]   GMR applications [J].
Daughton, JM .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 192 (02) :334-342
[7]   ULTRASONIC QUANTUM OSCILLATIONS IN WHITE TIN [J].
DEACON, JM ;
MACKINNON, L .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1973, 3 (12) :2082-2091
[8]   Magnetotransport of single crystalline NbAs [J].
Ghimire, N. J. ;
Luo, Yongkang ;
Neupane, M. ;
Williams, D. J. ;
Bauer, E. D. ;
Ronning, F. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (15)
[9]   FERMI-SURFACE OF LASB AND LABI [J].
HASEGAWA, A .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1985, 54 (02) :677-684
[10]   Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs [J].
Huang, Xiaochun ;
Zhao, Lingxiao ;
Long, Yujia ;
Wang, Peipei ;
Chen, Dong ;
Yang, Zhanhai ;
Liang, Hui ;
Xue, Mianqi ;
Weng, Hongming ;
Fang, Zhong ;
Dai, Xi ;
Chen, Genfu .
PHYSICAL REVIEW X, 2015, 5 (03)