Optical solitons in nano-fibers with Kundu-Eckhaus equation by Lie symmetry analysis

被引:0
作者
Kumar, Sachin [1 ]
Zhou, Qin [2 ]
Biswas, Anjan [3 ,4 ]
Belic, Milivoj [5 ]
机构
[1] Cent Univ Punjab, Sch Basic & Appl Sci, Ctr Math & Stat, City Campus,Mansa Rd, Bathinda 151001, India
[2] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Peoples R China
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[4] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[5] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS | 2016年 / 10卷 / 1-2期
关键词
Solitons; Kundu-Eckhaus (KE) equation; Lie classical method;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies similarity solutions of Kundu-Eckhaus (KE) equation that models wave propagation in a dispersive medium such as in optical waveguide. Lie classical method is applied to obtain symmetries of KE equation and then using these symmetries reduction to ordinary differential equations (ODEs) is obtained. The corresponding exact solutions of KE equation are also presented.
引用
收藏
页码:21 / 24
页数:4
相关论文
共 9 条
[1]   NONLINEAR EVOLUTION-EQUATIONS, RESCALINGS, MODEL PDES AND THEIR INTEGRABILITY .1. [J].
CALOGERO, F ;
ECKHAUS, W .
INVERSE PROBLEMS, 1987, 3 (02) :229-262
[2]   The Eckhaus soliton propagation in a random medium [J].
De Lillo, S ;
Sanchini, G .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (1-2) :255-261
[3]  
Guzman J. V., 2015, OPTOELECTRON ADV MAT, V9
[4]   Painleve analysis, Lie symmetries and exact solutions for (2+1)-dimensional variable coefficients Broer-Kaup equations [J].
Kumar, Sachin ;
Singh, K. ;
Gupta, R. K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1529-1541
[5]   Numerical analysis of the Eckhaus instability in travelling-wave convection in binary mixtures [J].
Mercader, I ;
Alonso, A ;
Batiste, O .
EUROPEAN PHYSICAL JOURNAL E, 2004, 15 (03) :311-318
[6]  
Olver PJ., 2000, Applications of Lie Groups to Differential Equations
[7]  
Ovsiannikov L.V., 1982, Group Analysis of Differential Equations
[8]  
Taghizadeh N., 2012, Trends Appl Sci Res, V7, P476, DOI [10.3923/tasr.2012.476.482, DOI 10.3923/TASR.2012.476.482]
[9]   New application of the (G′/G)-expansion method [J].
Zhang, Huiqun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3220-3225