Non-singular bouncing General Relativistic Hydrodynamics cosmological models

被引:3
作者
Shaikh, A. Y. [1 ]
Shaikh, A. S. [2 ]
Wankhade, K. S. [3 ]
机构
[1] Indira Gandhi Mahavidyalaya, Dept Math, Ralegaon, India
[2] Poona Coll Arts Sci & Commerce, Dept Math, Pune, Maharashtra, India
[3] YC Sci Coll, Dept Math, Mangrulpir, India
关键词
FRW metric; General relativistic hydrodynamics; General relativity; HUBBLE-SPACE-TELESCOPE; DARK ENERGY; ACCELERATING UNIVERSE; CONSTRAINTS; SUPERNOVAE; DECELERATION; DISCOVERIES; STATEFINDER; SCENARIO;
D O I
10.1007/s10509-021-03977-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have studied Friedmann-Robertson-Walker (FRW) cosmological models within the presence of General Relativistic Hydrodynamics (GRH) in General Relativity. Exact solutions of the field equations are deduced by considering the special form of the average scale factor considered by Abdussattar and Prajapati (Astrophys. Space Sci. 331:657, 2011), constraining the deceleration parameter and a special form of deceleration parameter by Singh and Debnath (Int. J. Theor. Phys. 48:351, 2009). The value of the deceleration is always negative which represents an inflationary accelerating model of the universe. The cosmic jerk parameter is positive, throughout the entire life of the universe which ensures an accelerated expansion. The Phantom, Chaplygin gas, and Tachyon fields are discussed. The scalar field values of tachyon and phantom increase with time, while the scalar potential values of tachyon and phantom decrease with time.
引用
收藏
页数:10
相关论文
共 58 条
[21]   Three-dimensional numerical general relativistic hydrodynamics: Formulations, methods, and code tests [J].
Font, JA ;
Miller, M ;
Suen, WM ;
Tobias, M .
PHYSICAL REVIEW D, 2000, 61 (04)
[22]   An introduction to relativistic hydrodynamics [J].
Font, Jose A. .
VII MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS, 2007, 91
[23]   Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity [J].
Font, Jose A. .
LIVING REVIEWS IN RELATIVITY, 2008, 11 (1)
[24]   From cosmic deceleration to acceleration: new constraints from SN Ia and BAO/CM [J].
Giostri, R. ;
Vargas dos Santos, M. ;
Waga, I. ;
Reis, R. R. R. ;
Calvao, M. O. ;
Lago, B. L. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (03)
[25]   Friedmann-Robertson-Walker accelerating Universe with interactive dark energy [J].
Goswami, G. K. ;
Pradhan, Anirudh ;
Beesham, A. .
PRAMANA-JOURNAL OF PHYSICS, 2019, 93 (06)
[26]   Dark Energy Scenario in Metric f(R) Formalism [J].
Hatkar, S. P. ;
Dudhe, P. S. ;
Katore, S. D. .
FOUNDATIONS OF PHYSICS, 2019, 49 (10) :1067-1085
[27]  
Katore S.D., 2015, Bulg. J. Phys., V42, P29
[28]  
Katore SD., 2015, ASTROPHYS SPACE SCI, V357, P1, DOI DOI 10.1007/S10509-015-2225-7
[29]   Nonsingular bouncing cosmology from general relativity [J].
Klinkhamer, F. R. ;
Wang, Z. L. .
PHYSICAL REVIEW D, 2019, 100 (08)
[30]   New constraints on ΩM, ΩΛ, and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope [J].
Knop, RA ;
Aldering, G ;
Amanullah, R ;
Astier, P ;
Blanc, G ;
Burns, MS ;
Conley, A ;
Deustua, SE ;
Doi, M ;
Ellis, R ;
Fabbro, S ;
Folatelli, G ;
Fruchter, AS ;
Garavini, G ;
Garmond, S ;
Garton, K ;
Gibbons, R ;
Goldhaber, G ;
Goobar, A ;
Groom, DE ;
Hardin, D ;
Hook, I ;
Howell, DA ;
Kim, AG ;
Lee, BC ;
Lidman, C ;
Mendez, J ;
Nobili, S ;
Nugent, PE ;
Pain, R ;
Panagia, N ;
Pennypacker, CR ;
Perlmutter, S ;
Quimby, R ;
Raux, J ;
Regnault, N ;
Ruiz-Lapuente, P ;
Sainton, G ;
Schaefer, B ;
Schahmaneche, K ;
Smith, E ;
Spadafora, AL ;
Stanishev, V ;
Sullivan, M ;
Walton, NA ;
Wang, L ;
Wood-Vasey, WM ;
Yasuda, N .
ASTROPHYSICAL JOURNAL, 2003, 598 (01) :102-137