Precision magnetic field modelling and control for wearable magnetoencephalography

被引:66
作者
Rea, Molly [1 ]
Holmes, Niall [1 ]
Hill, Ryan M. [1 ]
Boto, Elena [1 ]
Leggett, James [1 ]
Edwards, Lucy J. [1 ]
Woolger, David [2 ]
Dawson, Eliot [2 ]
Shah, Vishal
Osborne, James [3 ]
Bowtell, Richard [1 ]
Brookes, Matthew J. [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Sir Peter Mansfield Imaging Ctr, Univ Pk, Nottingham NG7 2RD, England
[2] Magnet Shields Ltd, Headcorn Rd, Kent TN12 0DS, England
[3] QuSpin Inc, 331 South 104th St,Suite 130, Louisville, CO 80027 USA
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Optically-pumped magnetometer; OPM; Magnetoencephalography; MEG; Magnetic field; Nulling; SIGNAL SPACE SEPARATION; MEG; PERFORMANCE;
D O I
10.1016/j.neuroimage.2021.118401
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Optically-pumped magnetometers (OPMs) are highly sensitive, compact magnetic field sensors, which offer a viable alternative to cryogenic sensors (superconducting quantum interference devices - SQUIDs) for magnetoen-cephalography (MEG). With the promise of a wearable system that offers lifespan compliance, enables movement during scanning, and provides higher quality data, OPMs could drive a step change in MEG instrumentation. However, this potential can only be realised if background magnetic fields are appropriately controlled, via a combination of optimised passive magnetic screening (i.e. enclosing the system in layers of high-permeability materials), and electromagnetic coils to further null the remnant magnetic field. In this work, we show that even in an OPM-optimised passive shield with extremely low ( < 2 nT) remnant magnetic field, head movement gen-erates significant artefacts in MEG data that manifest as low-frequency interference. To counter this effect we introduce a magnetic field mapping technique, in which the participant moves their head to sample the back-ground magnetic field using a wearable sensor array; resulting data are compared to a model to derive coefficients representing three uniform magnetic field components and five magnetic field gradient components inside the passive shield. We show that this technique accurately reconstructs the magnitude of known magnetic fields. Moreover, by feeding the obtained coefficients into a bi-planar electromagnetic coil system, we were able to re -duce the uniform magnetic field experienced by the array from a magnitude of 1 . 3 +/- 0 . 3 nT to 0 . 29 +/- 0 . 07 nT. Most importantly, we show that this field compensation generates a five-fold reduction in motion artefact at 0 -2 Hz, in a visual steady-state evoked response experiment using 6 Hz stimulation. We suggest that this technique could be used in future OPM-MEG experiments to improve the quality of data, especially in paradigms seeking to measure low-frequency oscillations, or in experiments where head movement is encouraged.
引用
收藏
页数:14
相关论文
共 48 条
[1]   High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation [J].
Allred, JC ;
Lyman, RN ;
Kornack, TW ;
Romalis, MV .
PHYSICAL REVIEW LETTERS, 2002, 89 (13) :130801-130801
[2]   Minimizing magnetic fields for precision experiments [J].
Altarev, I. ;
Fierlinger, P. ;
Lins, T. ;
Marino, M. G. ;
Niessen, B. ;
Petzoldt, G. ;
Reisner, M. ;
Stuiber, S. ;
Sturm, M. ;
Singh, J. Taggart ;
Taubenheim, B. ;
Rohrer, H. K. ;
Schlaepfer, U. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (23)
[3]   A magnetically shielded room with ultra low residual field and gradient [J].
Altarev, I. ;
Babcock, E. ;
Beck, D. ;
Burghoff, M. ;
Chesnevskaya, S. ;
Chupp, T. ;
Degenkolb, S. ;
Fan, I. ;
Fierlinger, P. ;
Frei, A. ;
Gutsmiedl, E. ;
Knappe-Grueneberg, S. ;
Kuchler, F. ;
Lauer, T. ;
Link, P. ;
Lins, T. ;
Marino, M. ;
McAndrew, J. ;
Niessen, B. ;
Paul, S. ;
Petzoldt, G. ;
Schlaepfer, U. ;
Schnabel, A. ;
Sharma, S. ;
Singh, J. ;
Stoepler, R. ;
Stuiber, S. ;
Sturm, M. ;
Taubenheim, B. ;
Trahms, L. ;
Voigt, J. ;
Zechlau, T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (07)
[4]   Magnetoencephalography for brain electrophysiology and imaging [J].
Baillet, Sylvain .
NATURE NEUROSCIENCE, 2017, 20 (03) :327-339
[5]   Fast transient networks in spontaneous human brain activity [J].
Baker, Adam P. ;
Brookes, Matthew J. ;
Rezek, Iead A. ;
Smith, Stephen M. ;
Behrens, Timothy ;
Smith, Penny J. Probert ;
Woolrich, Mark .
ELIFE, 2014, 3
[6]   OPTICALLY DRIVEN SPIN PRECESSION [J].
BELL, WE ;
BLOOM, AL .
PHYSICAL REVIEW LETTERS, 1961, 6 (06) :280-&
[7]   OPTICAL DETECTION OF MAGNETIC RESONANCE IN ALKALI METAL VAPOR [J].
BELL, WE ;
BLOOM, AL .
PHYSICAL REVIEW, 1957, 107 (06) :1559-1565
[8]  
Bork J., 2001, 8 LAYERED MAGNETICAL
[9]   Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System [J].
Borna, Amir ;
Carter, Tony R. ;
Colombo, Anthony P. ;
Jau, Yuan-Yu ;
McKay, Jim ;
Weisend, Michael ;
Taulu, Samu ;
Stephen, Julia M. ;
Schwindt, Peter D. D. .
PLOS ONE, 2020, 15 (01)
[10]   Magnetic Source Imaging Using a Pulsed Optically Pumped Magnetometer Array [J].
Borna, Amir ;
Carter, Tony R. ;
DeRego, Paul ;
James, Conrad D. ;
Schwindt, Peter D. D. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (02) :493-501