Rings of Frobenius operators

被引:19
作者
Katzman, Mordechai [1 ]
Schwede, Karl [2 ]
Singh, Anurag K. [3 ]
Zhang, Wenliang [4 ]
机构
[1] Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[4] Univ Nebraska, Dept Math, Lincoln, NE 68505 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
TEST IDEALS; ALGEBRAS;
D O I
10.1017/S0305004114000176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a local ring of prime characteristic. We study the ring of Frobenius operators F(E), where E is the injective hull of the residue field of R. In particular, we examine the finite generation of F(E) over its degree zero component F-0(E), and show that F(E) need not be finitely generated when R is a determinantal ring; nonetheless, we obtain concrete descriptions of F(E) in good generality that we use, for example, to prove the discreteness of F-jumping numbers for arbitrary ideals in determinantal rings.
引用
收藏
页码:151 / 167
页数:17
相关论文
共 15 条
  • [1] Frobenius and Cartier algebras of Stanley-Reisner rings
    Alvarez Montaner, Josep
    Boix, Alberto F.
    Zarzuela, Santiago
    [J]. JOURNAL OF ALGEBRA, 2012, 358 : 162 - 177
  • [2] An elementary approach to L-functions mod p
    Anderson, GW
    [J]. JOURNAL OF NUMBER THEORY, 2000, 80 (02) : 291 - 303
  • [3] BLICKLE M., 2001, ARXIVMATH0110244MATH
  • [4] Blickle M, 2013, J ALGEBRAIC GEOM, V22, P49
  • [5] BRUNS W, 1988, LECT NOTES MATH, V1327, P1
  • [6] Eisenbud D., 2005, GRAD TEXT M, V229
  • [7] F-PURITY AND RATIONAL SINGULARITY
    FEDDER, R
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 278 (02) : 461 - 480
  • [8] Goto S., 1978, J MATH SOC JPN, V30, P179, DOI DOI 10.2969/JMSJ/03020179
  • [9] IYENGAR SB, 2007, GRAD STUD MATH, V0087
  • [10] KATZMAN M., T AM MATH S IN PRESS