Propagation of Airy Gaussian vortex beams through slabs of right-handed materials and left-handed materials

被引:41
作者
Chen, Bo [1 ]
Chen, Chidao [1 ]
Peng, Xi [1 ]
Deng, Dongmei [1 ,2 ]
机构
[1] S China Normal Univ, Lab Nanophoton Funct Mat & Devices, Guangzhou 510631, Guangdong, Peoples R China
[2] Chinese Acad Sci, Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL VORTICES; ANGULAR-MOMENTUM; REFRACTION; DYNAMICS; LIGHT;
D O I
10.1364/JOSAB.32.000173
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By using the method of the ABCD matrix, the propagation of Airy Gaussian vortex (AiGV) beams through slabs of right-handed materials (RHMs) and left-handed materials (LHMs) is reported. Based on the Huygens diffraction integral, an approximate analytical propagation equation for AiGV beams is derived. Using numerical simulations, we study the intensity and phase distributions of the AiGV beams in RHMs and LHMs. We find that the optical vortex can destroy the center lobe of the AiGV beams, and the center lobe can reconstruct due to the fact that the acceleration of the vortex and the AiGV beam is not consistent. We also investigate the influence of different chi(0) values on the propagation of the AiGV beams through slabs of RHMs and LHMs, which can cause the AiGV beams to tend toward an Airy vortex beam with a smaller value and a Gaussian vortex beam with a larger one. In addition, we elucidate the energy flow and the angular momentum of the AiGV beams. (C) 2014 Optical Society of America
引用
收藏
页码:173 / 178
页数:6
相关论文
共 26 条
[1]   The orbital angular momentum of light [J].
Allen, L ;
Padgett, MJ ;
Babiker, M .
PROGRESS IN OPTICS, VOL XXXIX, 1999, 39 :291-372
[2]   Airy-Gauss beams and their transformation by paraxial optical systems [J].
Bandres, Miguel A. ;
Gutierrez-Vega, Julio C. .
OPTICS EXPRESS, 2007, 15 (25) :16719-16728
[3]   Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons [J].
Bekshaev, Aleksandr ;
Soskin, Marat .
OPTICS LETTERS, 2006, 31 (14) :2199-2201
[4]  
Born M., 1999, PRINCIPLES OPTICS
[5]   Dynamic Control of Collapse in a Vortex Airy Beam [J].
Chen, Rui-Pin ;
Chew, Khian-Hooi ;
He, Sailing .
SCIENTIFIC REPORTS, 2013, 3
[6]   Nonclassicality of vortex Airy beams in the Wigner representation [J].
Chen, Rui-Pin ;
Ooi, C. H. Raymond .
PHYSICAL REVIEW A, 2011, 84 (04)
[7]   Propagation dynamics of an optical vortex imposed on an Airy beam [J].
Dai, H. T. ;
Liu, Y. J. ;
Luo, D. ;
Sun, X. W. .
OPTICS LETTERS, 2010, 35 (23) :4075-4077
[8]   Propagation properties of Airy-Gaussian beams [J].
Deng, D. ;
Li, H. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 106 (03) :677-681
[9]   Propagation of an Airy vortex beam in uniaxial crystals [J].
Deng, Dongmei ;
Chen, Chidao ;
Zhao, Xin ;
Li, Huagang .
APPLIED PHYSICS B-LASERS AND OPTICS, 2013, 110 (03) :433-436
[10]   Propagation dynamics of optical vortices in Laguerre-Gaussian beams [J].
Flossmann, F ;
Schwarz, UT ;
Maier, M .
OPTICS COMMUNICATIONS, 2005, 250 (4-6) :218-230