Hybrid Neural Network, An Efficient Low-Power Digital Hardware Implementation of Event-based Artificial Neural Network

被引:18
作者
Yousefzadeh, Amirreza [1 ,2 ]
Orchard, Garrick [3 ]
Stromatias, Evangelos [1 ,2 ]
Serrano-Gotarredona, Teresa [1 ,2 ]
Linares-Barranco, Bernabe [1 ,2 ]
机构
[1] CSIC, Inst Microelect Sevilla, Seville, Spain
[2] Univ Seville, Seville, Spain
[3] Natl Univ Singapore, Singapore Inst Neurotechnol SINAPSE, Singapore, Singapore
来源
2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2018年
基金
欧盟地平线“2020”;
关键词
SENSOR; PIXEL;
D O I
10.1109/ISCAS.2018.8351562
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Interest in event-based vision sensors has proliferated in recent years, with innovative technology becoming more accessible to new researchers and highlighting such sensors' potential to enable low-latency sensing at low computational cost. These sensors can outperform frame-based vision sensors regarding data compression, dynamic range, temporal resolution and power efficiency. However, available mature framebased processing methods by using Artificial Neural Networks (ANNs) surpass Spiking Neural Networks (SNNs) in terms of accuracy of recognition. In this paper, we introduce a Hybrid Neural Network which is an intermediate solution to exploit advantages of both event-based and frame-based processing. We have implemented this network in FPGA and benchmarked its performance by using different event-based versions of MNIST dataset. HDL codes for this project are available for academic purpose upon request.
引用
收藏
页数:5
相关论文
共 25 条
  • [1] A Low Power, Fully Event-Based Gesture Recognition System
    Amir, Arnon
    Taba, Brian
    Berg, David
    Melano, Timothy
    McKinstry, Jeffrey
    Di Nolfo, Carmelo
    Nayak, Tapan
    Andreopoulos, Alexander
    Garreau, Guillaume
    Mendoza, Marcela
    Kusnitz, Jeff
    Debole, Michael
    Esser, Steve
    Delbruck, Tobi
    Flickner, Myron
    Modha, Dharmendra
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7388 - 7397
  • [2] Andreou AG, 2016, IEEE INT SYMP CIRC S, P2911, DOI 10.1109/ISCAS.2016.7539214
  • [3] A 3.6 μs Latency Asynchronous Frame-Free Event-Driven Dynamic-Vision-Sensor
    Antonio Lenero-Bardallo, Juan
    Serrano-Gotarredona, Teresa
    Linares-Barranco, Bernabe
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (06) : 1443 - 1455
  • [4] Mapping from Frame-Driven to Frame-Free Event-Driven Vision Systems by Low-Rate Rate Coding and Coincidence Processing-Application to Feedforward ConvNets
    Antonio Perez-Carrasco, Jose
    Zhao, Bo
    Serrano, Carmen
    Acha, Begona
    Serrano-Gotarredona, Teresa
    Chen, Shouchun
    Linares-Barranco, Bernabe
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2706 - 2719
  • [5] Skimming Digits: Neuromorphic Classification of Spike-Encoded Images
    Cohen, Gregory K.
    Orchard, Garrick
    Leng, Sio-Hoi
    Tapson, Jonathan
    Benosman, Ryad B.
    van Schaik, Andre
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [6] Diehl Peter U, 2015, 2015 INT JOINT C NEU, P1, DOI DOI 10.1109/IJCNN.2015.7280696
  • [7] Esser S.K., 2015, Advances in neural information processing systems, P1117
  • [8] Ganjtabesh M., ABS161101421 CORR
  • [9] Iakymchuk T, 2014, IEEE INT SYMP CIRC S, P1556, DOI 10.1109/ISCAS.2014.6865445
  • [10] SpiNNaker: Mapping Neural Networks onto a Massively-Parallel Chip Multiprocessor
    Khan, M. M.
    Lester, D. R.
    Plana, L. A.
    Rast, A.
    Jin, X.
    Painkras, E.
    Furber, S. B.
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2849 - 2856