Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits

被引:13
作者
Oinarov, R. [1 ]
机构
[1] Gumilev Eurasian Natl Univ, Astana, Kazakhstan
关键词
integral operator with variable integration limits; Lebesgue space; boundedness; compactness; KERNEL;
D O I
10.1134/S0037446611060097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Considering the integral operators with nonnegative kernels and variable integration limits, we obtain criteria of boundedness and compactness in weighted Lebesgue spaces under some conditions on the kernels that are weaker than those studied before.
引用
收藏
页码:1042 / 1055
页数:14
相关论文
共 17 条
[1]  
Batucv E.N., 1987, WEIGHTED INEQUALITIE
[2]  
Batuev E. N., 1989, SIB MAT ZH, V30, P13
[3]  
Batuev E.N., 1991, THESIS KHABAROVSK PO
[4]   Generalized Hardy operators and normalizing measures [J].
Chen, TL ;
Sinnamon, G .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (06) :829-866
[5]   ON THE SINGULAR NUMBERS OF CERTAIN VOLTERRA INTEGRAL-OPERATORS [J].
EDMUNDS, DE ;
STEPANOV, VD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 134 (01) :222-246
[6]   The generalized hardy operator with kernel and variable integral limits in Banach function spaces [J].
Gogatishvili, A ;
Lang, J .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 4 (01) :1-16
[7]  
Heinig HP, 1998, STUD MATH, V129, P157
[8]  
Krasnoselskii M., 1976, INTEGRAL OPERATORS S, DOI [10.1007/978-94-010-1542-4, DOI 10.1007/978-94-010-1542-4]
[9]   Boundedness and compactness of Volterra type integral operators [J].
Oinarov, R. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (05) :884-896
[10]  
OINAROV R, 1991, DOKL AKAD NAUK SSSR+, V319, P1076