FRACTAL DIMENSION OF THE TRAJECTORY OF A SINGLE PARTICLE DIFFUSING IN CROWDED MEDIA

被引:0
作者
Pitulice, Laura [1 ,2 ]
Craciun, Dana [3 ]
Vilaseca, Eudald [4 ,5 ]
Madurga, Sergio [4 ,5 ]
Pastor, Isabel [4 ,5 ]
Mas, Francesc [4 ,5 ]
Isvoran, Adriana [1 ]
机构
[1] West Univ Timisoara, Dept Biol Chem, Str Parvan 4, Timisoara 300223, Romania
[2] Alexandru Ioan Cuza Univ, Str Carol 1 11, Iasi 700506, Romania
[3] West Univ Timisoara, Teacher Training Dept, 4 V Parvan, Timisoara, Romania
[4] Univ Barcelona, Dept Phys Chem, C Marti & Franques 1, E-08028 Barcelona, Spain
[5] Univ Barcelona, Res Inst Theoret & Computat Chem IQTCUB, C Marti & Franques 1, E-08028 Barcelona, Spain
来源
ROMANIAN JOURNAL OF PHYSICS | 2016年 / 61卷 / 7-8期
关键词
diffusion; random walk; crowded media; fractal dimension; long-range correlation; ANOMALOUS DIFFUSION; PHYSIOLOGICAL CONSEQUENCES; DISORDERED MEDIA;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Monte Carlo simulations we have modeled the diffusion of a single particle in two- and three-dimensional lattices with different crowding conditions given by distinct obstacles size and density. All registered data emphasize that diffusion process is anomalous and diffusing particle describes fractal trajectories. We have introduced a new time-scale fractal dimension, d(m) which is related to the anomalous diffusion exponent, a. This allows us to relate the well-known length-scale fractal dimension of the random walk, d(w), to the new one introduced here as a time-scale fractal dimension. Moreover, the 3D simulations consider similar conditions to those used in our previous FRAP experiments in order to reveal the relationship between the length and time-scale fractal dimensions.
引用
收藏
页码:1276 / 1286
页数:11
相关论文
共 22 条
  • [1] Anomalous diffusion of proteins due to molecular crowding
    Banks, DS
    Fradin, C
    [J]. BIOPHYSICAL JOURNAL, 2005, 89 (05) : 2960 - 2971
  • [2] Ben-Avraham D., 2000, Diffusion and reactions in fractals and disordered systems
  • [3] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [4] Dewey GT., 1997, Fractals in Molecular Biophysics
  • [5] Crowding effects on diffusion in solutions and cells
    Dix, James A.
    Verkman, A. S.
    [J]. ANNUAL REVIEW OF BIOPHYSICS, 2008, 37 : 247 - 263
  • [6] Constrained diffusion or immobile fraction on cell surfaces: A new interpretation
    Feder, TJ
    BrustMascher, I
    Slattery, JP
    Baird, B
    Webb, WW
    [J]. BIOPHYSICAL JOURNAL, 1996, 70 (06) : 2767 - 2773
  • [7] HOW CROWDED IS THE CYTOPLASM
    FULTON, AB
    [J]. CELL, 1982, 30 (02) : 345 - 347
  • [8] INTERMITTENT DIFFUSION - A CHAOTIC SCENARIO IN UNBOUNDED SYSTEMS
    GEISEL, T
    NIERWETBERG, J
    [J]. PHYSICAL REVIEW A, 1984, 29 (04): : 2305 - 2308
  • [9] Diffusion in disordered media
    Havlin, S
    Ben-Avraham, D
    [J]. ADVANCES IN PHYSICS, 2002, 51 (01) : 187 - 292
  • [10] Hughes B.D, 1996, RANDOM WALKS RANDOM