The Arabidopsis Lectin Receptor Kinase LecRK-V.5 Represses Stomatal Immunity Induced by Pseudomonas syringae pv. tomato DC3000

被引:126
|
作者
Desclos-Theveniau, Marie [1 ]
Arnaud, Dominique
Huang, Ting-Yu
Lin, Grace Jui-Chih
Chen, Wei-Yen
Lin, Yi-Chia
Zimmerli, Laurent
机构
[1] Natl Taiwan Univ, Dept Life Sci, Taipei 10764, Taiwan
关键词
OXYGEN SPECIES PRODUCTION; PLANT INNATE IMMUNITY; ABSCISIC-ACID; GUARD-CELLS; HYDROGEN-PEROXIDE; PLASMA-MEMBRANE; CA2+ CHANNELS; PROTEIN; GENES; EXPRESSION;
D O I
10.1371/journal.ppat.1002513
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V. 5 (LecRK-V.5) negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V. 5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP) treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V. 5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS) and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO2 uptake and photosynthesis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000
    Zeng, Weiqing
    Brutus, Alexandre
    Kremer, James M.
    Withers, John C.
    Gao, Xiaoli
    Jones, A. Daniel
    He, Sheng Yang
    PLOS PATHOGENS, 2011, 7 (10)
  • [2] Direct Observation and Automated Measurement of Stomatal Responses to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana
    Hirata, Rikako
    Takagi, Momoko
    Toda, Yosuke
    Mine, Akira
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (204):
  • [3] Regulation of coronatine in Pseudomonas syringae pv. tomato DC3000
    Sreedharan, A.
    Bender, C. L.
    PHYTOPATHOLOGY, 2004, 94 (06) : S169 - S169
  • [4] The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000
    Buell, CR
    Joardar, V
    Lindeberg, M
    Selengut, J
    Paulsen, IT
    Gwinn, ML
    Dodson, RJ
    Deboy, RT
    Durkin, AS
    Kolonay, JF
    Madupu, R
    Daugherty, S
    Brinkac, L
    Beanan, MJ
    Haft, DH
    Nelson, WC
    Davidsen, T
    Zafar, N
    Zhou, LW
    Liu, J
    Yuan, QP
    Khouri, H
    Fedorova, N
    Tran, B
    Russell, D
    Berry, K
    Utterback, T
    Van Aken, SE
    Feldblyum, TV
    D'Ascenzo, M
    Deng, WL
    Ramos, AR
    Alfano, JR
    Cartinhour, S
    Chatterjee, AK
    Delaney, TP
    Lazarowitz, SG
    Martin, GB
    Schneider, DJ
    Tang, XY
    Bender, CL
    White, O
    Fraser, CM
    Collmer, A
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) : 10181 - 10186
  • [5] Characterization of the Fur Regulon in Pseudomonas syringae pv. tomato DC3000
    Butcher, Bronwyn G.
    Bronstein, Philip A.
    Myers, Christopher R.
    Stodghill, Paul V.
    Bolton, James J.
    Markel, Eric J.
    Filiatrault, Melanie J.
    Swingle, Bryan
    Gaballa, Ahmed
    Helmann, John D.
    Schneider, David J.
    Cartinhour, Samuel W.
    JOURNAL OF BACTERIOLOGY, 2011, 193 (18) : 4598 - 4611
  • [6] Visualization and characterization of Pseudomonas syringae pv. tomato DC3000 pellicles
    Farias, Gabriela A.
    Olmedilla, Adela
    Gallegos, Maria-Trinidad
    MICROBIAL BIOTECHNOLOGY, 2019, 12 (04): : 688 - 702
  • [7] Type III protein secretion and pathogenesis of Pseudomonas syringae pv. tomato DC3000 in Arabidopsis
    He, SY
    Wei, WS
    Yuan, J
    Hu, WQ
    Zwiesler-Vollick, J
    Thilmony, R
    Lee, P
    Plovanich-Jones, A
    BIOLOGY OF PLANT-MICROBE INTERACTIONS, VOL 2, 2000, : 82 - 87
  • [8] Wound-induced polypeptides improve resistance against Pseudomonas syringae pv. tomato DC3000 in Arabidopsis
    Yu, Liangliang
    Wang, Yawen
    Liu, Yan
    Li, Ningning
    Yan, Junhui
    Luo, Li
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 504 (01) : 149 - 156
  • [9] Proteomic Analysis of Lysine Acetylation and Succinylation to Investigate the Pathogenicity of Virulent Pseudomonas syringae pv. tomato DC3000 and Avirulent Line Pseudomonas syringae pv. tomato DC3000 avrRpm1 on Arabidopsis thaliana
    Ding, Yongqiang
    Liu, Yangxuan
    Yang, Kexin
    Zhao, Yiran
    Wen, Chun
    Yang, Yi
    Zhang, Wei
    GENES, 2024, 15 (04)
  • [10] Novel virulence gene of Pseudomonas syringae pv. tomato strain DC3000
    Preiter, K
    Brooks, DM
    Penaloza-Vazquez, A
    Sreedharan, A
    Bender, CL
    Kunkel, BN
    JOURNAL OF BACTERIOLOGY, 2005, 187 (22) : 7805 - 7814