A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures

被引:156
作者
Vu-Bac, N. [3 ]
Duong, T. X. [4 ]
Lahmer, T. [3 ]
Zhuang, X. [5 ]
Sauer, R. A. [4 ]
Park, H. S. [6 ]
Rabczuk, T. [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, Germany
[4] Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, Templergraben 55, D-52056 Aachen, Germany
[5] Leibniz Univ Hannover, Inst Kontinuumsmech, Appelstr 11, D-30167 Hannover, Germany
[6] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
基金
欧洲研究理事会;
关键词
Inverse analysis; Isogeometric analysis; Kirchhoff-Love shells; Nonlinear mechanics; Instability shape change; Adjoint method; TOPOLOGY OPTIMIZATION; SHAPE OPTIMIZATION; ELEMENT SOLUTION; FLAWS; IDENTIFICATION; FORMULATION;
D O I
10.1016/j.cma.2017.09.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article presents original work combining a NURBS-based inverse analysis with both kinematic and constitutive nonlinearities to recover the applied loads and deformations of thin shell structures. The inverse formulation is tackled by gradient-based optimization algorithms based on computed and measured displacements at a number of discrete locations. The proposed method allows accurately recovering the target shape of shell structures such that instabilities due to snapping and buckling are captured. The results obtained show good performance and applicability of the proposed algorithms to computer-aided manufacturing of shell structures. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:427 / 455
页数:29
相关论文
共 60 条
[1]  
[Anonymous], TM86382 NASA TM
[2]   Blended isogeometric shells [J].
Benson, D. J. ;
Hartmann, S. ;
Bazilevs, Y. ;
Hsu, M. -C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 255 :133-146
[3]   A large deformation, rotation-free, isogeometric shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M-C ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (13-16) :1367-1378
[4]   Isogeometric shell analysis: The Reissner-Mindlin shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M. C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :276-289
[5]   Optimal shapes of mechanically motivated surfaces [J].
Bletzinger, Kai-Uwe ;
Firl, Matthias ;
Linhard, Johannes ;
Wuechner, Roland .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :324-333
[6]   Computational methods for form finding and optimization of shells and membranes [J].
Bletzinger, KU ;
Wüchner, R ;
Daoud, F ;
Camprubi, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (30-33) :3438-3452
[7]  
Bogert P.B., 2003, P 44 AIAA ASME ASCE
[8]   Inverse problems in elasticity [J].
Bonnet, M ;
Constantinescu, A .
INVERSE PROBLEMS, 2005, 21 (02) :R1-R50
[9]   Isogeometric finite element data structures based on Bezier extraction of NURBS [J].
Borden, Michael J. ;
Scott, Michael A. ;
Evans, John A. ;
Hughes, Thomas J. R. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (1-5) :15-47
[10]   An introduction to the mechanics of morphogenesis for plant biologists [J].
Boudaoud, Arezki .
TRENDS IN PLANT SCIENCE, 2010, 15 (06) :353-360