Newton's method may fail to recognize proximity to optimal points in constrained optimization

被引:9
作者
Andreani, R. [1 ]
Martinez, J. M. [1 ]
Santos, L. T. [1 ]
机构
[1] Univ Estadual Campinas, DMA IMECC, UNICAMP, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Constrained optimization; Newton-Lagrange method; Sequential optimality conditions; Stopping criteria; SQP;
D O I
10.1007/s10107-016-0994-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We will show examples in which the primal sequence generated by the Newton-Lagrange method converges to a strict local minimizer of a constrained optimization problem but the gradient of the Lagrangian does not tend to zero, independently of the choice of the dual sequence.
引用
收藏
页码:547 / 555
页数:9
相关论文
共 12 条
[1]   On the behaviour of constrained optimization methods when Lagrange multipliers do not exist [J].
Andreani, R. ;
Martinez, J. M. ;
Santos, L. T. ;
Svaiter, B. F. .
OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (03) :646-657
[2]   On sequential optimality conditions for smooth constrained optimization [J].
Andreani, Roberto ;
Haeser, Gabriel ;
Martinez, J. M. .
OPTIMIZATION, 2011, 60 (05) :627-641
[3]   A NEW SEQUENTIAL OPTIMALITY CONDITION FOR CONSTRAINED OPTIMIZATION AND ALGORITHMIC CONSEQUENCES [J].
Andreani, Roberto ;
Martinez, J. M. ;
Svaiter, B. F. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :3533-3554
[4]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[5]  
Fernandez D., 2013, PESQUI OPER, V34, P591
[6]   Combining stabilized SQP with the augmented Lagrangian algorithm [J].
Izmailov, A. F. ;
Solodov, M. V. ;
Uskov, E. I. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (02) :405-429
[7]   Stabilized SQP revisited [J].
Izmailov, A. F. ;
Solodov, M. V. .
MATHEMATICAL PROGRAMMING, 2012, 133 (1-2) :93-120
[8]  
Izmailov A. F., 2016, J OPTIM THEOR APPL, P1
[9]   A practical optimality condition without constraint qualifications for nonlinear programming [J].
Martínez, JM ;
Svaiter, BF .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (01) :117-133
[10]  
Nocedal J, 2006, SPRINGER SER OPER RE, P135