CROSS COMMUTATORS ON BACKWARD SHIFT INVARIANT SUBSPACES OVER THE BIDISK II

被引:0
作者
Izuchi, Kei Ji [1 ]
Izuchi, Kou Hei [2 ]
机构
[1] Niigata Univ, Dept Math, Niigata 9502181, Japan
[2] Yamaguchi Univ, Fac Educ, Yamaguchi 7538513, Japan
基金
日本学术振兴会;
关键词
backward shift invariant subspace; invariant subspace; Hardy space; cross commutator;
D O I
10.4134/JKMS.2012.49.1.139
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the previous paper, we gave a characterization of backward shift invariant subspaces of the Hardy space over the bidisk on which [S(z)(n), S(w)*] for a positive integer n >= 2. In this case, it holds that S(z)(n) = cI for some c is an element of C. In this paper, it is proved that if [S(phi), S(w)*] = 0 and phi is an element of H(infinity)(Gamma(z)), then S(phi) = cI for some c is an element of C.
引用
收藏
页码:139 / 151
页数:13
相关论文
共 11 条
[1]  
[Anonymous], 1969, FUNCTION THEORY POLY
[2]  
Bercovici H., 1988, Mathematical Surveys and Monographs, V26
[3]   ON 2 PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE [J].
BEURLING, A .
ACTA MATHEMATICA, 1949, 81 (02) :239-255
[4]  
Chen X., 2003, Analytic Hilbert modules
[5]  
Izuchi K, 2004, J OPERAT THEOR, V51, P361
[6]  
Izuchi K., 2004, Acta Sci. Math, V70, P727
[7]  
Izuchi KJ, 2006, ACTA SCI MATH, V72, P251
[8]  
IZUCHI KJ, COMMUTATIVITY 2 VARI
[9]   THE VALIDITY OF BEURLING THEOREMS IN POLYDISCS [J].
MANDREKAR, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) :145-148
[10]  
NIKOLSKII NK, 1986, TREATISE SHIFT OPERA