p-harmonic approximation of functions of least gradient

被引:30
作者
Juutinen, P [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FIN-40014 Jyvaskyla, Finland
关键词
function of least gradient; p-Laplacian;
D O I
10.1512/iumj.2005.54.2658
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this note is to establish a natural connection between the minimizers of two closely related variational problems. We prove global and local convergence results for the p-harmonic functions, defined as continuous local minimizers of the LP norm of the gradient for 1 < p < infinity, as p -> 1, and show that the limit function minimizes at least locally the total variation of the vector-valued measure del u in BV(Omega).
引用
收藏
页码:1015 / 1029
页数:15
相关论文
共 20 条
[1]  
Attouch H, 1999, LECT NOTES ECON MATH, V477, P25
[2]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[3]  
Cicalese M, 2003, ASYMPTOTIC ANAL, V35, P27
[4]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[5]   Some existence results for partial differential equations involving the 1-Laplacian:: Eigenvalues for -Δ1 [J].
Demengel, F .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (12) :1071-1076
[7]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .1. [J].
EVANS, LC ;
SPRUCK, J .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) :635-681
[8]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-61798-0
[9]  
Giusti E., 2003, DIRECT METHODS CALCU
[10]  
Giusti E., 1984, Monographs in mathematics