Bound Tightening for the Alternating Current Optimal Power Flow Problem

被引:40
作者
Chen, Chen [1 ]
Atamturk, Alper [1 ]
Oren, Shmuel S. [1 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Optimal power flow; conic optimization; spatial branch and bound; bound tightening; GLOBAL OPTIMIZATION; ALGORITHM;
D O I
10.1109/TPWRS.2015.2497160
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the Alternating Current Optimal Power Flow (ACOPF) problem, formulated as a nonconvex Quadratically-Constrained Quadratic Program (QCQP) with complex variables. ACOPF may be solved to global optimality with a semidefinite programming (SDP) relaxation in cases where its QCQP formulation attains zero duality gap. However, when there is positive duality gap, no optimal solution to the SDP relaxation is feasible for ACOPF. One way to find a global optimum is to partition the problem using a spatial branch-and-bound method. Tightening upper and lower variable bounds can improve solution times in spatial branching by potentially reducing the number of partitions needed. We propose special-purpose closed-form bound tightening methods to tighten limits on nodal powers, line flows, phase angle differences, and voltage magnitudes. Computational experiments are conducted using a spatial branch-and-cut solver. We construct variants of IEEE test cases with high duality gaps to demonstrate the effectiveness of the bound tightening procedures.
引用
收藏
页码:3729 / 3736
页数:8
相关论文
共 31 条
[1]   FURTHER DEVELOPMENTS IN LP-BASED OPTIMAL POWER FLOW [J].
ALSAC, O ;
BRIGHT, J ;
PRAIS, M ;
STOTT, B .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1990, 5 (03) :697-711
[2]  
[Anonymous], 2000, The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm, DOI [DOI 10.1007/978-1-4757-3216-0_8, DOI 10.1007/978-1-4757-3216-08, DOI 10.1007/978-1-4757-3216-0]
[3]  
[Anonymous], M U GUID
[4]  
[Anonymous], 2009, THESIS
[5]   Semidefinite programming for optimal power flow problems [J].
Bai, Xiaoqing ;
Wei, Hua ;
Fujisawa, Katsuki ;
Wang, Yong .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (6-7) :383-392
[6]  
Baosen Zhang, 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), P1508
[7]  
Bienstock, 2015, LINEAR RELAXATIONS O
[8]  
Blair J. R. S., 1993, GRAPH THEORY SPARSE, P1, DOI [10.1007/978-1-4613-8369-7\\_1, DOI 10.1007/978-1-4613-8369-7, DOI 10.1007/978-1-4613-8369-71]
[9]  
Bose S., IEEE T CONT IN PRESS
[10]   Local Solutions of the Optimal Power Flow Problem [J].
Bukhsh, Waqquas A. ;
Grothey, Andreas ;
McKinnon, Ken I. M. ;
Trodden, Paul A. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) :4780-4788