K-SVD FOR HARDI DENOISING

被引:0
作者
Patel, Vishal [1 ]
Shi, Yonggang [1 ]
Thompson, Paul M. [1 ]
Toga, Arthur W. [1 ]
机构
[1] Univ Calif Los Angeles, Lab Neuro Imaging, Los Angeles, CA 90095 USA
来源
2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2011年
关键词
Magnetic resonance imaging; diffusion tensor imaging; noise reduction; algorithms; brain;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Noise is an important concern in high-angular resolution diffusion imaging studies because it can lead to errors in downstream analyses of white matter structure. To address this issue, we investigate a new approach for denoising diffusion-weighted data sets based on the K-SVD algorithm. We analyze its characteristics using both simulated and biological data and compare its performance with existing methods. Our results show that K-SVD provides robust and effective noise reduction and is practical for use in high-volume applications.
引用
收藏
页码:1805 / 1808
页数:4
相关论文
共 12 条
[1]  
Aja-Fernández S, 2008, IEEE T MED IMAGING, V27, P1389, DOI 10.1109/TMI.2008.920609
[2]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[3]  
Descoteaux M, 2008, LECT NOTES COMPUT SC, V5242, P122, DOI 10.1007/978-3-540-85990-1_15
[4]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[5]  
Goh Alvina, 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P2496, DOI 10.1109/CVPRW.2009.5206843
[6]  
Kim Y, 2009, LECT NOTES COMPUT SC, V5636, P515
[7]  
Lee JE, 2006, I S BIOMED IMAGING, P77
[8]   VARIATIONAL DENOISING OF DIFFUSION WEIGHTED MRI [J].
McGraw, Tim ;
Vemuri, Baba ;
Oezarslan, Evren ;
Chen, Yunmei ;
Mareci, Thomas .
INVERSE PROBLEMS AND IMAGING, 2009, 3 (04) :625-648
[9]  
Parker GJM, 2000, J MAGN RESON IMAGING, V11, P702, DOI 10.1002/1522-2586(200006)11:6<702::AID-JMRI18>3.0.CO
[10]  
2-A