Composite Learning Enhanced Robot Impedance Control

被引:66
作者
Sun, Tairen [1 ]
Peng, Liang [1 ]
Cheng, Long [1 ,2 ]
Hou, Zeng-Guang [1 ,2 ,3 ]
Pan, Yongping [4 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
[4] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Impedance; Convergence; Robots; Stability criteria; Uncertainty; Parameter estimation; Adaptive control; composite adaptation; impedance control; learning control; parameter convergence; robot;
D O I
10.1109/TNNLS.2019.2912212
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The desired impedance dynamics can be achieved for a robot if and only if an impedance error converges to zero or a small neighborhood of zero. Although the convergence of impedance errors is important, it is seldom obtained in the existing impedance controllers due to robots modeling uncertainties and external disturbances. This brief proposes two composite learning impedance controllers (CLICs) for robots with parameter uncertainties based on whether a factorization assumption is satisfied or not. In the proposed control designs, the convergence of impedance errors, reflected by the convergence of parameter estimation errors and some auxiliary errors, is achieved by using composite learning laws under a relaxed excitation condition. The theoretical results are proven based on the Lyapunov theory. The effectiveness and advantages of the proposed CLICs are validated by simulations on a parallel robot in three cases.
引用
收藏
页码:1052 / 1059
页数:8
相关论文
共 27 条
[1]  
Chan S. P., 1991, International Journal of Robotics & Automation, V6, P220
[2]   Learning impedance control for robotic manipulators [J].
Cheah, CC ;
Wang, DW .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (03) :452-465
[3]  
Dong Y., IEEE T SYST MAN CYBE
[4]   Variable Impedance Control of Redundant Manipulators for Intuitive Human-Robot Physical Interaction [J].
Ficuciello, Fanny ;
Villani, Luigi ;
Siciliano, Bruno .
IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (04) :850-863
[5]   Design and Adaptive Control for an Upper Limb Robotic Exoskeleton in Presence of Input Saturation [J].
He, Wei ;
Li, Zhijun ;
Dong, Yiting ;
Zhao, Ting .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (01) :97-108
[6]   Adaptive Fuzzy Neural Network Control for a Constrained Robot Using Impedance Learning [J].
He, Wei ;
Dong, Yiting .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (04) :1174-1186
[7]   Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation [J].
He, Wei ;
Dong, Yiting ;
Sun, Changyin .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (03) :334-344
[8]   IMPEDANCE CONTROL - AN APPROACH TO MANIPULATION .1. THEORY [J].
HOGAN, N .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1985, 107 (01) :1-7
[9]   Impedance Control of an Intrinsically Compliant Parallel Ankle Rehabilitation Robot [J].
Jamwal, Prashant K. ;
Hussain, Shahid ;
Ghayesh, Mergen H. ;
Rogozina, Svetlana V. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (06) :3638-3647
[10]   Neural network impedance force control of robot manipulator [J].
Jung, S ;
Hsia, TC .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1998, 45 (03) :451-461