Cyclotomic constructions of skew Hadamard difference sets

被引:25
作者
Feng, Tao [1 ]
Xiang, Qing [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Cyclotomy; Difference set; Gauss sum; Index 2 Gauss sum; Partial difference set; Skew Hadamard difference set; SCHEMES;
D O I
10.1016/j.jcta.2011.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the old idea of constructing difference sets from cyclotomic classes. Two constructions of skew Hadamard difference sets are given in the additive groups of finite fields by using union of cyclotomic classes of F-q of order N = 2p(1)(m), where p(1) is a prime and in a positive integer. Our main tools are index 2 Gauss sums, instead of cyclotomic numbers. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 1998, Gauss and Jacobi Sums
[2]  
Baumert L.D., 1971, CYCLIC DIFFERENCE SE
[3]  
Baumert L.D., 1973, DSN Progr. Rep, V16, P128
[4]   UNIFORM CYCLOTOMY [J].
BAUMERT, LD ;
MILLS, WH ;
WARD, RL .
JOURNAL OF NUMBER THEORY, 1982, 14 (01) :67-82
[5]  
Beth Th., 1999, ENCY MATH APPL, V78
[6]  
CHEN YQ, ABELIAN NONABELIAN P
[7]  
CHEN YQ, 1994, DESIGN CODE CRYPTOGR, V4, P313
[8]   Paley type group schemes and planar Dembowski-Ostrom polynomials [J].
Chen, Yu Qing ;
Polhill, John .
DISCRETE MATHEMATICS, 2011, 311 (14) :1349-1364
[9]  
Cohen H, 1996, GTM, V138
[10]   SOME NEW CYCLOTOMIC STRONGLY REGULAR GRAPHS [J].
DELANGE, CLM .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (04) :329-330