Coupled folding and binding with α-helix-forming molecular recognition elements

被引:516
作者
Oldfield, CJ
Cheng, YG
Cortese, MS
Romero, P
Uversky, VN
Dunker, AK
机构
[1] Indiana Univ Purdue Univ, Sch Med, Dept Biochem & Mol Biol, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA
[2] Mol Kinet Inc, Indianapolis, IN 46268 USA
[3] Indiana Univ Purdue Univ, Sch Informat, Indianapolis, IN 46202 USA
[4] Russian Acad Sci, Inst Biol Instrumentat, Pushchino 142292, Moscow Region, Russia
关键词
D O I
10.1021/bi050736e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many protein-protein and protein-nucleic acid interactions involve coupled folding and binding of at least one of the partners. Here, we propose a protein structural element or feature that mediates the binding events of initially disordered regions. This element consists of a short region that undergoes coupled binding and folding within a longer region of disorder. We call these features "molecular recognition elements" (MoREs). Examples of MoREs bound to their partners can be found in the alpha-helix, beta-strand, polyproline II helix, or irregular secondary structure conformations, and in various mixtures of the four structural forms. Here we describe an algorithm that identifies regions having propensities to become alpha-helix-forming molecular recognition elements (alpha-MoREs) based on a discriminant function that indicates such regions while giving a low false-positive error rate on a large collection of structured proteins. Application of this algorithm to databases of genomics and functionally annotated proteins indicates that alpha-MoREs are likely to play important roles protein-protein interactions involved in signaling events.
引用
收藏
页码:12454 / 12470
页数:17
相关论文
共 105 条
[1]  
Ashburner M, 2001, GENOME RES, V11, P1425
[2]   Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Capel, M ;
Moore, PB ;
Steitz, TA .
NATURE, 1999, 400 (6747) :841-847
[3]   Domains of the measles virus N protein required for binding to P protein and self-assembly [J].
Bankamp, B ;
Horikami, SM ;
Thompson, PD ;
Huber, M ;
Billeter, M ;
Moyer, SA .
VIROLOGY, 1996, 216 (01) :272-277
[4]   PROTEIN MODULES [J].
BARON, M ;
NORMAN, DG ;
CAMPBELL, ID .
TRENDS IN BIOCHEMICAL SCIENCES, 1991, 16 (01) :13-17
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[7]   The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner [J].
Bourhis, JM ;
Johansson, K ;
Receveur-Bréchot, V ;
Oldfield, CJ ;
Dunker, KA ;
Canard, B ;
Longhi, S .
VIRUS RESEARCH, 2004, 99 (02) :157-167
[8]   The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY [J].
Bren, A ;
Eisenbach, M .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 278 (03) :507-514
[9]   THE CARBOXY-TERMINAL DOMAIN OF SENDAI VIRUS NUCLEOCAPSID PROTEIN IS INVOLVED IN COMPLEX-FORMATION BETWEEN PHOSPHOPROTEIN AND NUCLEOCAPSID-LIKE PARTICLES [J].
BUCHHOLZ, CJ ;
RETZLER, C ;
HOMANN, HE ;
NEUBERT, WJ .
VIROLOGY, 1994, 204 (02) :770-776
[10]   Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E [J].
Callaghan, AJ ;
Aurikko, JP ;
IIag, LL ;
Grossmann, JG ;
Chandran, V ;
Kühnel, K ;
Poljak, L ;
Carpousis, AJ ;
Robinson, CV ;
Symmons, MF ;
Luisi, BF .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (05) :965-979