Hysteresis during cycling of nickel hydroxide active material

被引:70
作者
Srinivasan, V
Weidner, JW
Newman, J
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
[2] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1149/1.1385846
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The nickel hydroxide electrode is known to exhibit a stable hysteresis loop, with the potential on charge being higher than that on discharge at every state-of-charge (SOC). What we show here is that this loop created during a complete charge and discharge (i.e., boundary curves) is not sufficient to define the state of the system. Rather, internal paths within the boundary curves (i.e., scanning curves) can be generated that access potentials between the boundary curves. The potential obtained at any SOC, as well as how the material charges and discharges from that point, depends on the cycling history of the material. The implication of this phenomenon is that the potential of nickel-based batteries cannot be used as an indication of the SOC of the cell. Analysis of the boundary and scanning curves suggest that the electrode consists of a number of individual units or domains, each of which exhibits two or more metastable states. The cycling behavior of the nickel hydroxide electrode is discussed within the context of previously developed theoretical arguments regarding domain theory. Although the specific cause for the metastability in each domain is not understood, considerable insights are provided into the history-dependent behavior of the nickel hydroxide electrode. Finally, an empirical procedure is developed to predict the scanning curves based on the boundary curves. (C) 2001 The Electrochemical Society.
引用
收藏
页码:A969 / A980
页数:12
相关论文
共 42 条
[1]  
[Anonymous], 1994, HDB BATTERIES
[2]  
BARD AJ, 1980, ELECTROCHEMICAL METH
[3]   STUDIES CONCERNING CHARGED NICKEL-HYDROXIDE ELECTRODES .2. THERMODYNAMIC CONSIDERATIONS OF THE REVERSIBLE POTENTIALS [J].
BARNARD, R ;
RANDELL, CF ;
TYE, FL .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1980, 10 (01) :127-141
[4]  
BARNARD R, 1981, POWER SOURCES, V8
[5]  
Bode H., 1966, ELECTROCHIM ACTA, V11, P1079, DOI [DOI 10.1016/0013-4686(66)80045-2, 10.1016/0013-4686(66)80045-2]
[6]   AGING AND THE DIFFUSION PROCESS AT THE NICKEL-HYDROXIDE ELECTRODE [J].
BRIGGS, GWD ;
SNODIN, PR .
ELECTROCHIMICA ACTA, 1982, 27 (05) :565-572
[7]  
CORNILSEN BC, 1999, ELECTROCHEMICAL SOC, V9815, P23
[8]   Modeling side reactions in composite LiyMn2O4 electrodes [J].
Darling, R ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :990-998
[9]   THE DOMAIN MODEL OF HYSTERESIS .2. INTERACTING DOMAINS [J].
ENDERBY, JA .
TRANSACTIONS OF THE FARADAY SOCIETY, 1956, 52 (01) :106-120
[10]   THE DOMAIN MODEL OF HYSTERESIS .1. INDEPENDENT DOMAINS [J].
ENDERBY, JA .
TRANSACTIONS OF THE FARADAY SOCIETY, 1955, 51 (06) :835-848