Fully discrete finite element approximation of the stochastic Cahn-Hilliard-Navier-Stokes system

被引:2
作者
Deugoue, G. [1 ,2 ]
Moghomye, B. Jidjou [1 ]
Medjo, T. Tachim [2 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] Florida Int Univ, Dept Math & Stat, MMC, Miami, FL 33199 USA
关键词
stochastic Cahn-Hilliard-Navier-Stokes; weak martingale solutions; finite element method; Euler scheme; Wiener process; compactness; DIFFUSE-INTERFACE MODEL; PHASE-FIELD MODEL; ENERGY STABLE SCHEMES; SEMIDISCRETE SCHEME; INCOMPRESSIBLE FLUIDS; ERROR ANALYSIS; 2-PHASE FLOW; CONVERGENCE; MARTINGALE; SIMULATION;
D O I
10.1093/imanum/draa056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the numerical approximation of the stochastic Cahn-Hilliard-Navier-Stokes system on a bounded polygonal domain of R-d, d = 2, 3. We propose and analyze an algorithm based on the finite element method and a semiimplicit Euler scheme in time for a fully discretization. We prove that the proposed numerical scheme satisfies the discrete mass conservative law, has finite energies and constructs a weak martingale solution of the stochastic Cahn-Hilliard-Navier-Stokes system when the discretization step (both in time and in space) tends to zero.
引用
收藏
页码:3046 / 3112
页数:67
相关论文
共 61 条
[31]   Analysis of finite element approximations of a phase field model for two-phase fluids [J].
Feng, Xiaobing ;
He, Yinnian ;
Liu, Chun .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :539-571
[32]   Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows [J].
Feng, Xiaobing .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1049-1072
[33]   ANALYSIS OF A DARCY-CAHN-HILLIARD DIFFUSE INTERFACE MODEL FOR THE HELE-SHAW FLOW AND ITS FULLY DISCRETE FINITE ELEMENT APPROXIMATION [J].
Feng, Xiaobing ;
Wise, Steven .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1320-1343
[34]   MARTINGALE AND STATIONARY SOLUTIONS FOR STOCHASTIC NAVIER-STOKES EQUATIONS [J].
FLANDOLI, F ;
GATAREK, D .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (03) :367-391
[35]  
Girault V., 1981, FINITE ELEMENT METHO
[36]   MARTINGALE AND PATHWISE SOLUTIONS TO THE STOCHASTIC ZAKHAROV-KUZNETSOV EQUATION WITH MULTIPLICATIVE NOISE [J].
Glatt-Holtz, Nathan ;
Temam, Roger ;
Wang, Chuntian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (04) :1047-1085
[37]   Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model [J].
Gruen, G. ;
Klingbeil, F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :708-725
[38]   ON CONVERGENT SCHEMES FOR DIFFUSE INTERFACE MODELS FOR TWO-PHASE FLOW OF INCOMPRESSIBLE FLUIDS WITH GENERAL MASS DENSITIES [J].
Gruen, G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) :3036-3061
[39]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311
[40]  
Kay D, 2008, INTERFACE FREE BOUND, V10, P15