Fully discrete finite element approximation of the stochastic Cahn-Hilliard-Navier-Stokes system

被引:2
作者
Deugoue, G. [1 ,2 ]
Moghomye, B. Jidjou [1 ]
Medjo, T. Tachim [2 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] Florida Int Univ, Dept Math & Stat, MMC, Miami, FL 33199 USA
关键词
stochastic Cahn-Hilliard-Navier-Stokes; weak martingale solutions; finite element method; Euler scheme; Wiener process; compactness; DIFFUSE-INTERFACE MODEL; PHASE-FIELD MODEL; ENERGY STABLE SCHEMES; SEMIDISCRETE SCHEME; INCOMPRESSIBLE FLUIDS; ERROR ANALYSIS; 2-PHASE FLOW; CONVERGENCE; MARTINGALE; SIMULATION;
D O I
10.1093/imanum/draa056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the numerical approximation of the stochastic Cahn-Hilliard-Navier-Stokes system on a bounded polygonal domain of R-d, d = 2, 3. We propose and analyze an algorithm based on the finite element method and a semiimplicit Euler scheme in time for a fully discretization. We prove that the proposed numerical scheme satisfies the discrete mass conservative law, has finite energies and constructs a weak martingale solution of the stochastic Cahn-Hilliard-Navier-Stokes system when the discretization step (both in time and in space) tends to zero.
引用
收藏
页码:3046 / 3112
页数:67
相关论文
共 61 条
[1]  
Alouges F., 2014, Stoch. Partial Differ. Equ., Anal. Computat., V2, P281
[2]  
Banas L., 2013, Stochastic Ferromagnetism: Analysis and Numerics
[3]   A convergent finite-element-based discretization of the stochastic Landau-Lifshitz-Gilbert equation [J].
Banas, Lubomir ;
Brzezniak, Zdzislaw ;
Neklyudov, Mikhail ;
Prohl, Andreas .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) :502-549
[4]  
Bensoussan A., 1973, J. Funct. Anal., V13, P195
[5]  
Bessaih H., 2014, Stoch. Part. Differ. Equ. Anal. Comput, V2, P433
[6]   GALERKIN APPROXIMATIONS FOR THE STOCHASTIC BURGERS EQUATION [J].
Bloemker, Dirk ;
Jentzen, Arnulf .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :694-715
[7]  
Brenner S., 2007, The Mathematical Theory of Finite Element Methods
[8]  
Brezis H, 2011, UNIVERSITEXT, P1
[9]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[10]   Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing [J].
Brzezniak, Zdzislaw ;
Carelli, Erich ;
Prohl, Andreas .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) :771-824